2,605
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 190-202 | Received 28 Feb 2019, Accepted 11 Sep 2019, Published online: 09 Oct 2019

References

  • Amanatidis, S., M. M. Maricq, L. Ntziachristos, and Z. Samaras. 2016. Measuring number, mass, and size of exhaust particles with diffusion chargers: The dual Pegasor Particle Sensor. J. Aerosol Sci. 92:1–15. doi:10.1016/j.jaerosci.2015.10.005.
  • Amanatidis, S., M. M. Maricq, L. Ntziachristos, and Z. Samaras. 2017. Application of the dual Pegasor Particle Sensor to real-time measurement of motor vehicle exhaust PM. J. Aerosol Sci. 103:93–104. doi:10.1016/j.jaerosci.2016.10.005.
  • Asbach, C., H. Fissan, B. Stahlmecke, T. A. J. Kuhlbusch, and D. Y. H. Pui. 2009. Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J. Nanoparticle Res. 11 (1):101–109. doi:10.1007/s11051-008-9479-8.
  • Bair, W. J. 1994. The Revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract—An overview. Ann. Occup. Hyg. 38:251–256. doi:10.1093/annhyg/38.inhaled_particles_VII.251.
  • Brines, M., M. Dall’Osto, D. C. S. Beddows, R. M. Harrison, and X. Querol. 2014. Simplifying aerosol size distributions modes simultaneously detected at four monitoring sites during SAPUSS. Atmos. Chem. Phys. 14 (6):2973–2986. doi:10.5194/acp-14-2973-2014.
  • Brook, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A., et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American heart association. Circulation 121 (21):2331–2378. doi:10.1161/CIR.0b013e3181dbece1.
  • Brown, D. M., M. R. Wilson, W. MacNee, V. Stone, and K. Donaldson. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175 (3):191–199. doi:10.1006/taap.2001.9240.
  • Buonanno, G., S. Marini, L. Morawska, and F. C. Fuoco. 2012. Individual dose and exposure of Italian children to ultrafine particles. Sci. Total Environ. 438:271–277. doi:10.1016/j.scitotenv.2012.08.074.
  • Carbone, S., M. Aurela, K. Saarnio, S. Saarikoski, H. Timonen, A. Frey, D. Sueper, I. M. Ulbrich, J. L. Jimenez, M. Kulmala, et al. 2014. Wintertime aerosol chemistry in Sub-arctic urban air. Aerosol Sci. Technol. 48 (3):313–323. doi:10.1080/02786826.2013.875115.
  • Dal Maso, M., M. Kulmala, I. Riipinen, R. Wagner, T. Hussein, P. Aalto, and K. E. J. Lehtinen. 2005. Formation and growth of fresh atmospheric aerosols eight years of aerosol size distribution data from SMEAR. Boreal Environ. Res. 10:323–336.
  • Dal Maso, M., J. Gao, A. Järvinen, H. Li, D. Luo, K. Janka, and T. Rönkkö. 2016. Improving air quality measurements by a diffusion charger based electrical particle sensors – A field study in Beijing, China. Aerosol Air Qual. Res. 16:3001–3011. doi:10.4209/aaqr.2015.09.0546.
  • Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer. 1993. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329 (24):1753–1759. doi:10.1056/NEJM199312093292401.
  • EEA. 2018. Air quality in Europe – 2018 report. EEA Report No 12/2018, Copenhagen, Denmark. doi:10.2800/777411.
  • Eeftens, M., H. C. Phuleria, R. Meier, I. Aguilera, E. Corradi, M. Davey, R. Ducret-Stich, M. Fierz, R. Gehrig, A. Ineichen, et al. 2015. Spatial and temporal variability of ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and PMcoarse in Swiss study areas. Atmos. Environ. 111 (2):60–70. doi:10.1016/j.atmosenv.2015.03.031.
  • European Council, D. 2008. On ambient air quality and cleaner air for Europe 2008/50/EC. Off. J. 1:1–44.
  • Fierz, M. 2011. Lung-deposited surface area measurements in Zurich. http://www.exisab.com/Docs/Conferences/ETH_Nanoparticle_2011/.
  • Fierz, M., C. Houle, P. Steigmeier, and H. Burtscher. 2011. Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci. Technol. 45 (1):1–10. doi:10.1080/02786826.2010.516283.
  • Fierz, M., D. Meier, P. Steigmeier, and H. Burtscher. 2014. Aerosol measurement by induced currents. Aerosol Sci. Technol. 48 (4):350–357. doi:10.1080/02786826.2013.875981.
  • Fissan, H., S. Neumann, A. Trampe, D. Y. H. Pui, and W. G. Shin. 2006. Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J. Nanoparticle Res. 9 (1):53–59. doi:10.1007/s11051-006-9156-8.
  • Gao, M., J. Cao, and E. Seto. 2015. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 199:56–65.
  • Gomes, J. F. P., J. C. M. Bordado, and P. C. S. Albuquerque. 2012. On the assessment of exposure to airborne ultrafine particles in urban environments. J. Toxicol. Environ. Heal. Part A Curr. Issues 75 (22–23):1316–1329. doi:10.1080/15287394.2012.721163.
  • Hama, S. M. L., N. Ma, R. L. Cordell, G. P. A. Kos, A. Wiedensohler, and P. S. Monks. 2017. Lung deposited surface area in Leicester urban background site/UK: Sources and contribution of new particle formation. Atmos. Environ. 151:94–107. doi:10.1016/j.atmosenv.2016.12.002.
  • Helin, A., J. Niemi, A. Virkkula, L. Pirjola, K. Teinilä, J. Backman, M. Aurela, S. Saarikoski, T. Rönkkö, E. Asmi, et al. 2018. Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmos. Environ. 190:87–98. doi:10.1016/j.atmosenv.2018.07.022.
  • Hennig, F., U. Quass, B. Hellack, M. Küpper, T. A. J. Kuhlbusch, M. Stafoggia, and B. Hoffmann. 2018. Ultrafine and fine particle number and surface area concentrations and daily cause-specific mortality in the Ruhr area, Germany, 2009–2014. Environ. Health Perspect. 126 (2):2009–2014.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behaviour, and measurement of airborne particles. 2nd ed. New York: Wiley.
  • Hoek, G., R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, and J. D. Kaufman. 2013. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 12 (1):43. doi:10.1186/1476-069X-12-43.
  • Järvinen, A., H. Kuuluvainen, J. V. Niemi, S. Saari, M. Dal Maso, L. Pirjola, R. Hillamo, K. Janka, J. Keskinen, and T. Rönkkö. 2015. Monitoring urban air quality with a diffusion charger based electrical particle sensor. Urban Clim. 14:441–456. doi:10.1016/j.uclim.2014.10.002.
  • Jiao, W., G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, et al. 2016. Community Air Sensor Network (CAIRSENSE) Project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 9 (11):5281–5292. doi:10.5194/amt-9-5281-2016.
  • Karjalainen, P., H. Timonen, E. Saukko, H. Kuuluvainen, S. Saarikoski, P. Aakko-Saksa, T. Murtonen, M. Bloss, M. Dal Maso, P. Simonen, et al. 2016. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car. Atmos. Chem. Phys. 16 (13):8559–8570. doi:10.5194/acp-16-8559-2016.
  • Kelly, F. J., and J. C. Fussell. 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60:504–526. doi:10.1016/j.atmosenv.2012.06.039.
  • Kulkarni, P., P. A. Baron, and K. Willeke. 2011. Aerosol measurement, 2nd ed, aerosol measurement: Principles, techniques, and applications. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.
  • Kumar, P., L. Morawska, C. Martani, G. Biskos, M. Neophytou, S. Di Sabatino, M. Bell, L. Norford, and R. Britter. 2015. The rise of low-cost sensing for managing air pollution in cities. Environ Int. 75:199–205. doi:10.1016/j.envint.2014.11.019.
  • Kuula, J., H. Kuuluvainen, T. Rönkkö, J. V. Niemi, E. Saukko, H. Portin, M. Aurela, S. Saarikoski, A. Rostedt, R. Hillamo, et al. 2018. Applicability of optical and diffusion charging-based particulate matter sensors to urban air quality measurements. Aerosol Air Qual. Res. 122:1–16. doi:10.4209/aaqr.2018.04.0143.
  • Kuuluvainen, H., M. Poikkimäki, A. Järvinen, J. Kuula, M. Irjala, M. Dal Maso, J. Keskinen, H. Timonen, J. V. Niemi, and T. Rönkkö. 2018. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environ. Pollut. 241:96–105. doi:10.1016/j.envpol.2018.04.100.
  • Kuuluvainen, H., T. Rönkkö, A. Järvinen, S. Saari, P. Karjalainen, T. Lähde, L. Pirjola, J. Niemi, R. Hillamo, and J. Keskinen. 2016. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos. Environ. 136:105–113. doi:10.1016/j.atmosenv.2016.04.019.
  • Lamberg, H., K. Nuutinen, J. Tissari, J. Ruusunen, P. Yli-Pirilä, O. Sippula, M. Tapanainen, P. Jalava, U. Makkonen, K. Teinilä, et al. 2011. Physicochemical characterization of fine particles from small-scale wood combustion. Atmos. Environ. 45 (40):7635–7643. doi:10.1016/j.atmosenv.2011.02.072.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–371. doi:10.1038/nature15371.
  • Ma, N., and W. Birmili. 2015. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci. Total Environ. 512–513:154–166. doi:10.1016/j.scitotenv.2015.01.009.
  • Manninen, H. E., T. Nieminen, E. Asmi, S. Gagné, S. Häkkinen, K. Lehtipalo, P. Aalto, M. Vana, A. Mirme, S. Mirme, et al. 2010. EUCAARI ion spectrometer measurements at 12 European sites-analysis of new particle formation events. Atmos. Chem. Phys. 10 (16):7907–7927. doi:10.5194/acp-10-7907-2010.
  • Maricq, M. M. 2013. Monitoring motor vehicle pm emissions: An evaluation of three portable low-cost aerosol instruments. Aerosol Sci. Technol. 47(5):564–573. doi:10.1080/02786826.2013.773394.
  • Maso, M. D., J. Gao, A. Järvinen, H. Li, D. Luo, K. Janka, and T. Rönkkö. 2017. Improving urban air quality measurements by a diffusion charger based electrical particle sensors – A field study in Beijing, China. Aerosol Air Qual. Res. 16 (12):3001–3011. doi:10.4209/aaqr.2015.09.0546.
  • Morawska, L., P. K. Thai, X. Liu, A. Asumadu-Sakyi, G. Ayoko, A. Bartonova, A. Bedini, F. Chai, B. Christensen, M. Dunbabin, et al. 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 116:286–299. (February):doi:10.1016/j.envint.2018.04.018.
  • Niemi, J., S. Saarikoski, M. Aurela, H. Tervahattu, R. Hillamo, D. L. Westphal, P. Aarnio, T. Koskentalo, U. Makkonen, H. Vehkamäki, et al. 2009. Long-range transport episodes of fine particles in Southern Finland during 1999-2007. Atmos. Environ. 43 (6):1255–1264. doi:10.1016/j.atmosenv.2008.11.022.
  • Ntziachristos, L., S. Amanatidis, Z. Samaras, K. Janka, and J. Tikkanen. 2013. Application of the Pegasor Particle Sensor for the measurement of mass and particle number emissions. SAE Int. J. Fuels Lubr. 6 (2):521–531.
  • Ntziachristos, L., A. Polidori, H. Phuleria, M. D. Geller, and C. Sioutas. 2007. Application of a diffusion charger for the measurement of particle surface concentration in different environments. Aerosol Sci. Technol. 41 (6):571–580.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (7):823–839. doi:10.1289/ehp.7339.
  • Pirinen, P., H. Simola, J. Aalto, J.-P. Kaukoranta, P. Karlsson, and R. Ruuhela. 2012. Tilastoja suomen ilmastosta 1981-2010. Raportteja 1:96.
  • Pirjola, L., A. Dittrich, J. V. Niemi, S. Saarikoski, H. Timonen, H. Kuuluvainen, A. Järvinen, A. Kousa, T. Rönkkö, and R. Hillamo. 2016. Physical and chemical characterization of real-world particle number and mass emissions from city buses in Finland. Environ. Sci. Technol. 50 (1):294–304. doi:10.1021/acs.est.5b04105.
  • Pirjola, L., J. Niemi, S. Saarikoski, M. Aurela, J. Enroth, S. Carbone, K. Saarnio, H. Kuuluvainen, A. Kousa, T. Rönkkö, et al. 2017. Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmos. Environ. 158:60–75. doi:10.1016/j.atmosenv.2017.03.028.
  • Rai, A. C., P. Kumar, F. Pilla, A. N. Skouloudis, S. Di Sabatino, C. Ratti, A. Yasar, and D. Rickerby. 2017. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 607 (Suppl. C):691–705. doi:10.1016/j.scitotenv.2017.06.266.
  • Reche, C., M. Viana, M. Brines, N. Pérez, D. Beddows, A. Alastuey, and X. Querol. 2015. Determinants of aerosol lung-deposited surface area variation in an urban environment. Sci. Total Environ. 517:38–47. doi:10.1016/j.scitotenv.2015.02.049.
  • Rönkkö, T., H. Kuuluvainen, P. Karjalainen, J. Keskinen, R. Hillamo, J. V. Niemi, L. Pirjola, H. J. Timonen, S. Saarikoski, E. Saukko, et al. 2017. Traffic is a major source of atmospheric nanocluster aerosol. Proc. Natl. Acad. Sci. 114 (29):7549–7554. doi:10.1073/pnas.1700830114.
  • Rostedt, A., A. Arffman, K. Janka, J. Yli-Ojanperä, and J. Keskinen. 2014. Characterization and response model of the PPS-M aerosol sensor. Aerosol Sci. Technol. 48 (10):1022–1030. doi:10.1080/02786826.2014.951023.
  • Saarikoski, S., H. Timonen, K. Saarnio, M. Aurela, L. Järvi, P. Keronen, V.-M. Kerminen, and R. Hillamo. 2008. Sources of organic carbon in fine particulate matter in Northern European urban air. Atmos. Chem. Phys. 8 (20):6281–6295. doi:10.5194/acp-8-6281-2008.
  • Silva, R. A., J. J. West, Y. Zhang, S. C. Anenberg, J. F. Lamarque, D. T. Shindell, W. J. Collins, S. Dalsoren, G. Faluvegi, G. Folberth, et al. 2013. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 8 (3):034005. doi:10.1088/1748-9326/8/3/034005.
  • Sirignano, M., M. Conturso, A. Magno, S. Di Iorio, E. Mancaruso, B. M. Vaglieco, and A. D'Anna. 2018. Evidence of sub-10 nm particles emitted from a small-size diesel engine. Exp. Therm. Fluid Sci. 95:60–64. (January):doi:10.1016/j.expthermflusci.2018.01.031.
  • Snyder, E. G., T. H. Watkins, P. A. Solomon, E. D. Thoma, R. W. Williams, G. Hagler, D. Shelow, D. A. Hindin, V. J. Kilaru, and P. W. Preuss. 2013. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 47 (20):11369–11377.
  • Timonen, H., S. Carbone, M. Aurela, K. Saarnio, S. Saarikoski, N. L. Ng, M. R. Canagaratna, M. Kulmala, V. M. Kerminen, D. R. Worsnop, et al. 2013. Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. J. Aerosol Sci. 56:61–77. doi:10.1016/j.jaerosci.2012.06.005.
  • Tissari, J., J. Lyyränen, K. Hytönen, O. Sippula, U. Tapper, A. Frey, K. Saarnio, A. S. Pennanen, R. Hillamo, R. O. Salonen, et al. 2008. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater. Atmos. Environ. 42 (34):7862–7873. doi:10.1016/j.atmosenv.2008.07.019.
  • Todea, A. M., S. Beckmann, H. Kaminski, and C. Asbach. 2015. Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J. Aerosol Sci. 89:96–109. doi:10.1016/j.jaerosci.2015.07.003.
  • Zhu, J., J. E. Penner, G. Lin, C. Zhou, L. Xu, and B. Zhuang. 2017. Mechanism of SOA formation determines magnitude of radiative effects. Proc. Natl. Acad. Sci. 114 (48):12685–12690. doi:10.1073/pnas.1712273114.