2,285
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Deposition efficiency and uniformity of monodisperse solid particle deposition in the Vitrocell® 24/48 Air–Liquid-Interface in vitro exposure system

ORCID Icon, , , , , , ORCID Icon, , , & show all
Pages 52-65 | Received 23 Jul 2019, Accepted 19 Sep 2019, Published online: 31 Oct 2019

References

  • Adamson, J., D. Thorne, A. Dalrymple, D. Dillon, and C. Meredith. 2013. Assessment of cigarette smoke particle deposition within the Vitrocell exposure module using quartz crystal microbalances. Chem. Central J. 7(1):50. doi: 10.1186/1752-153X-7-50.
  • AeroSolved, Computational Fluid Dynamics Code. 2017. Accessed November 14, 2017. http://www.aerosolved.com.
  • Asgari, M., F. Lucci, and A. K. Kuczaj. 2019. Multispecies aerosol evolution and deposition in a bent pipe. J. Aerosol Sci. 129:53–70. doi: 10.1016/j.jaerosci.2018.12.007.
  • Aufderheide, M., W.-D. Heller, O. Krischenowski, N. Mohle, and D. Hochrainer. 2017. Improvement of the cultex® exposure by radial distribution of the test aerosol. Exp. Toxicol. Pathol. 69(6):359–365. doi: 10.1016/j.etp.2017.02.004.
  • Comouth, A., H. Saathoff, K. H. Naumann, S. Muelhopt, H.-R. Paur, and T. Leisner. 2013. Modelling and measurement of particle deposition for cell exposure at the air-liquid interface. J. Aerosol Sci. 63:103–114.
  • Elghobashi, S. 1994. On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4):309–329. doi: 10.1007/BF00936835.
  • Frederix, E., A. Kuczaj, M. Nordlund, A. Veldman, and B. Geurts. 2017. Eulerian modeling of inertial and diffusional aerosol deposition in bent pipes. Comput. Fluids 159:217–231. doi: 10.1016/j.compfluid.2017.09.018.
  • Fujitani, Y., Y. Sugaya, M. Hashiguchi, A. Furuyama, S. Hirano, and A. Takamia. 2015. Particle deposition efficiency at air-liquid interface of a cell exposure chamber. J. Aerosol Sci. 81:90–99. doi: 10.1016/j.jaerosci.2014.10.012.
  • Ishikawa, S., T. Suzuki, and Y. Nagata. 2016a. Analysis of cigarette smoke deposition within an in vitro exposure system for simulating exposure in the human respiratory tract. Beitr. Zur Tabakforsch. Int. Contrib. Tobacco Res. 27:20–29. doi: 10.1515/cttr-2016-0004.
  • Ishikawa, S., Y. Kanemaru, H. Nara, K. Erami, and Y. Nagata. 2016b. Assessing the mutagenic activities of smoke from different cigarettes in direct exposure experiments using the modified Ames Salmonella assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen 803–804:13–21. doi: 10.1016/j.mrgentox.2016.04.008.
  • Kam, K. M., L. Zeng, Q. Zhou, R. Tran, and J. Yang. 2013. On assessing spatial uniformity of particle distributions in quality control of manufacturing processes. J. Manufact. Syst. 32:154–166. doi: 10.1016/j.jmsy.2012.07.018.
  • Kim, J. S., T. M. Peters, P. T. O'Shaughnessy, A. Adamcakova-Dodd, and P. S. Thorne. 2013. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicol. in Vitro 27:164–173. doi: 10.1016/j.tiv.2012.08.030.
  • Lacroix, G., W. Koch, D. Ritter, A. C. Gutleb, S. T. Larsen, T. Loret, F. Zanetti, S. Constant, S. Chortarea, B. Rothen-Rutishauser, P. S. Hiemstra, E. Frejafon, P. Hubert, L. Gribaldo, P. Kearns, J.-M. Aublant, S. Diabaté, C. Weiss, A. de Groot, and I. Kooter. 2018. Air-liquid interface in vitro models for respiratory toxicology research: consensus workshop and recommendations. Appl. Vitro Toxicol. 4(2):91–106. doi: 10.1089/aivt.2017.0034.
  • Longest, P. W., and M. J. Oldham. 2006. Mutual enhancements of CFD modeling and experimental data: a case study of micron particle deposition in a branching airway model. Inhalation Toxicol. 18(10):761–771. doi: 10.1080/08958370600748653.
  • Lucci, F., N. D. Castro, A. A. Rostami, M. J. Oldham, J. Hoeng, Y. B. Pithawalla, and A. K. Kuczaj. 2018. Characterization and modeling of aerosol deposition in Vitrocell® exposure systems – exposure well chamber deposition efficiency. J. Aerosol Sci. 23:141–160. doi: 10.1016/j.jaerosci.2018.06.015.
  • Majeed, S., S. Frentzel, S. Wagner, D. Kuehn, P. Leroy, P. A. Guy, A. Knorr, J. Hoeng, and M. C. Peitsch. 2014. Characterization of the Vitrocell® 24/48 in vitro aerosol exposure system using mainstream cigarette smoke. Chem. Central J. 8(1):62. doi: 10.1016/j.tiv.2017.04.021.
  • Morris, J. B. 2012. Biologically-based modeling insights in inhaled vapor absorption and dosimetry. Pharmacol. Therap. 136(3):401–413. doi: 10.1016/j.pharmthera.2012.08.017.
  • Neilson, L., C. Mankus, D. Thorne, G. Jackson, J. DeBay, and C. Meredith. 2015. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicol. Vitro 29(7):1952–1962. doi: 10.1016/j.tiv.2015.05.018.
  • Oldham, M. 2006. Challenges in validating CFD-derived inhaled aerosol deposition predictions. Inhalation Toxicol. 18(10):781–786. doi: 10.1080/08958370600748752.
  • Oldham, M. J., J. Zhang, M. J. Rusyniak, D. B. Kane, and W. P. Gardner. 2018. Particle size distribution of selected electronic nicotine delivery system products. Food Chem. Toxicol. 113:236–240. doi: 10.1016/j.fct.2018.01.045.
  • OpenFOAM, 2015 OpenFOAM. Accessed September 8, 2015.http://www.openfoam.org.
  • Paur, H.-R., F. R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W. G. Kreyling, O. Hanninen, G. Kasper, M. Riediker, B. Rothen-Rutishauser, and O. Schmid. 2011. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung- a dialog between aerosol science and biology. J. Aerosol Sci. 42(10):668–692. doi: 10.1016/j.jaerosci.2011.06.005.
  • Phalen, R. F. 1984. Inhalation studies: Foundations and techniques, 89. Boca Raton, FL: CRC Press.
  • Raabe, O. G. 1968. The dilution of monodisperse suspensions for aerosolization. Am. Ind. Hygiene Assoc. J. 29(5):439–443. doi: 10.1080/00028896809343031.
  • Raabe, O. G. 1972. Operating characteristics of two compressed air nebulizers used in inhalation experiments. Fission product inhalation program annual report 1971–1972, 1–6. Inhalation Toxicology Research Institute, Albuquerque, N.M., LF-45.
  • Rafidi, N., F. Brogaard, L. Chen, R. Hakansson, and A. Tabikh. 2018. CFD and experimental studies on capture of fine particles by liquid droplets in open spray towers. Sustain. Environ. Res. 28(6):382–388. doi: 10.1016/j.serj.2018.08.003.
  • Secondo, L. E., N. J. Liu, and N. A. Lewinski. 2016. Methodological considerations when conducting in vitro, air-liquid interface exposures to engineered nanoparticles aerosols. Crit. Rev. Toxicol. 47(3):225–262. doi: 10.1080/10408444.2016.1223015.
  • Steiner, S., S. Majeed, G. Kratzer, G. Vuillaume, J. Hoeng, and S. Frentzel. 2017. Characterization of the Vitrocell® 24/48 aerosol exposure system for its use in exposures to liquid aerosols. Toxicol. In Vitro 42:263–272. doi: 10.1016/j.tiv.2017.04.021.
  • Thorne, D., and J. Adamson. 2013. A review of in vitro cigarette smoke exposure systems. Exp. Toxicol. Pathol. 65(7–8):1183–1193. doi: 10.1016/j.etp.2013.06.001.
  • Thorne, D., J. Kilford, R. Payne, J. Adamson, K. Scott, A. Dalrymple, C. Meredith, and D. Dillon. 2013. Characterisation of a Vitrocell® VC 10 in vitro smoke exposure system using dose tools and biological analysis. Chem. Central J. 7(1):146. doi: 10.1186/1752-153X-7-146.
  • Thorne, D., A. Dalrymple, D. Dillon, M. Duke, and C. Meredith. 2015. A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test. Inhalation Toxicol. 12:629–640. doi: 10.3109/08958378.2015.1080773.
  • Tippe, A., U. Heinzmann, and C. Roth. 2002. Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. J. Aerosol Sci. 33(2):207–218.
  • Upadhyay, S., and L. Palmberg. 2018. Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol. Sci. 164(1):21–30. doi: 10.1093/toxsci/kfy053.
  • Weber, S., M. Hebestreit, T. Wilms, L. L. Conroy, and G. Rodrigo. 2013. Comet assay and air-liquid interface exposure system: a new combination to evaluate genotoxic effects of cigarette whole smoke in human lung cell lines. Toxicol. Vitro 27(6):1987–1991. doi: 10.1016/j.tiv.2013.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.