2,320
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Development of a new personal air filter test system using a low-cost particulate matter (PM) sensor

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 203-216 | Received 19 May 2019, Accepted 24 Sep 2019, Published online: 06 Jan 2020

References

  • Balgis, R., C. W. Kartikowati, T. Ogi, L. Gradon, L. Bao, K. Seki, and K. Okuyama. 2015. Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chem. Eng. Sci. 137:947–54. doi:10.1016/j.ces.2015.07.038.
  • Brincat, J. P., D. Sardella, A. Muscat, S. Decelis, J. N. Grima, V. Valdramidis, and R. Gatt. 2016. A review of the state-of-the-art in air filtration technologies as may be applied to cold storage warehouses. Trends Food Sci. Technol. 50:175–85. doi:10.1016/j.tifs.2016.01.015.
  • Bull, K. 2008. Cabin air filtration: Helping to protect occupants from infectious diseases. Travel Med. Infect. Dis. 6 (3):142–4. doi:10.1016/j.tmaid.2007.08.004.
  • Dacunto, P. J., N. E. Klepeis, K.-C. Cheng, V. Acevedo-Bolton, R.-T. Jiang, J. L. Repace, W. R. Ott, and L. M. Hildemann. 2015. Determining PM2.5 calibration curves for a low-cost particle monitor: Common indoor residential aerosols. Environ. Sci.: Processes Impacts 17 (11):1959–66. doi:10.1039/C5EM00365B.
  • Dickinson, K. L., M. Dalaba, Z. S. Brown, R. Alirigia, E. R. Coffey, E. Mesenbring, M. Achazanaga, D. Agao, M. Ali, E. Kanyomse, et al. 2018. Prices, peers, and perceptions (P3): Study protocol for improved biomass cookstove project in northern Ghana. BMC Public Health 18 (1):1209. doi:10.1186/s12889-018-6116-z.
  • Dhaniyala, S., and B. Liu. 1999. Investigations of particle penetration in fibrous filters part I. Experimental. J. IEST 42 (1):32–40. doi:10.17764/jiet.42.1.k71lm163x574w701.
  • Fujii, Y., W. Iriana, M. Oda, A. Puriwigati, S. Tohno, P. Lestari, A. Mizohata, and H. S. Huboyo. 2014. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ. 87:164–9. doi:10.1016/j.atmosenv.2014.01.037.
  • Hapidin, D. A., C. Saputra, D. S. Maulana, M. M. Munir, and K. Khairurrijal. 2019. Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation. Aerosol Air Qual. Res. 19 (1):181–94. doi:10.4209/aaqr.2017.12.0611.
  • Huang, J. T., and V. J. Huang. 2007. Evaluation of the Efficiency of Medical Masks and the Creation of New Medical Masks. J. Int. Med. Res. 35 (2):213–23. doi:10.1177/147323000703500205.
  • Karlsson, H. L., J. Gustafsson, P. Cronholm, and L. Möller. 2009. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol. Lett. 188 (2):112–8. doi:10.1016/j.toxlet.2009.03.014.
  • Kim, S., C. Sioutas, and M. Chang. 2010. Electrostatic enhancement of the collection efficiency of stainless steel fiber filters. Aerosol Sci. Technol. 32 (3):197–213. doi:10.1080/027868200303731.
  • Kwon, S. B., H. Sakurai, T. Seto, and Y. J. Kim. 2006. Charge neutralization of submicron aerosols using surface-discharge microplasma. J. Aerosol Sci. 37 (4):483–99. doi:10.1016/j.jaerosci.2005.05.007.
  • Lee, E. S., and Y. Zhu. 2014. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles. Environ. Sci. Technol. 48 (4):2328–35. doi:10.1021/es404952q.
  • Li, J., and P. Biswas. 2017. Optical characterization studies of a low-cost particle sensor. Aerosol Air Qual. Res. 17 (7):1691–704. doi:10.4209/aaqr.2017.02.0085.
  • Li, J., H. Li, Y. Ma, Y. Wang, A. A. Abokifa, C. Lu, and P. Biswas. 2018. Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network. Build. Environ. 127:138–47. doi:10.1016/j.buildenv.2017.11.001.
  • Liu, C., P. C. Hsu, H. W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui. 2015. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 6:6205. doi:10.1038/ncomms7205.
  • Liu, D., Q. Zhang, J. Jiang, and D. R. Chen. 2017. Performance calibration of low-cost and portable particular matter (PM) sensors. J. Aerosol Sci. 112:1–10. doi:10.1016/j.jaerosci.2017.05.011.
  • Matulevicius, J., L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichonovas, and J. Baltrusaitis. 2014. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014:1–13. doi:10.1155/2014/859656.
  • Matulevicius, J., L. Kliucininkas, T. Prasauskas, D. Buivydiene, and D. Martuzevicius. 2016. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J. Aerosol Sci. 92:27–37. doi:10.1016/j.jaerosci.2015.10.006.
  • Möritz, M., H. Peters, B. Nipko, and H. Rüden. 2001. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems. Int. J. Hyg. Environ. Health 203 (5-6):401–9. doi:10.1078/1438-4639-00054.
  • Munir, M. M., F. Iskandar, K. Khairurrijal, and K. Okuyama. 2009. High performance electrospinning system for fabricating highly uniform polymer nanofibers. Rev. Sci. Instrum. 80 (2):026106. doi:10.1063/1.3079688.
  • Newcomer, D. A., P. LaPuma, R. Brandys, and A. Northcross. 2018. Capture efficiency of portable high-efficiency air filtration devices used during building construction activities. J. Occup. Environ. Hyg. 15 (4):285–92. doi:10.1080/15459624.2017.1422869.
  • Olivares, G., and S. Edwards. 2015. The Outdoor Dust Information Node (ODIN) – Development and performance assessment of a low cost ambient dust sensor. Atmos. Meas. Tech. Discuss. 8 (7):7511–33. doi:10.5194/amtd-8-7511-2015.
  • Patel, S., J. Li, A. Pandey, S. Pervez, R. K. Chakrabarty, and P. Biswas. 2017. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels. Environ. Res. 152:59–65. doi:10.1016/j.envres.2016.10.001.
  • Podgórski, A., A. Bałazy, and L. Gradoń. 2006. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 61 (20):6804–15. doi:10.1016/j.ces.2006.07.022.
  • Rajak, A., D. A. Hapidin, F. Iskandar, M. M. Munir, and K. Khairurrijal. 2019. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology 30 (42):425602. doi:10.1088/1361-6528/ab2e3b.
  • Sharp. 2006. Compact Optical Dust Sensor. Accessed May 14, 2019. https://www.sparkfun.com/datasheets/Sensors/gp2y1010au_e.pdf.
  • Shi, B., L. E. Ekberg, and S. Langer. 2013. Intermediate air filters for general ventilation applications: An experimental evaluation of various filtration efficiency expressions. Aerosol Sci. Technol. 47 (5):488–98. doi:10.1080/02786826.2013.766667.
  • Shi, Y., T. Matsunaga, Y. Yamaguchi, Z. Li, X. Gu, and X. Chen. 2018. Long-term trends and spatial patterns of satellite-retrieved PM2.5 concentrations in South and Southeast Asia from 1999 to 2014. Sci. Total Environ. 615:177–86. doi:10.1016/j.scitotenv.2017.09.241.
  • Singer, B. C., and W. W. Delp. 2018. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles. Indoor Air 28 (4):624–39. doi:10.1111/ina.12463.
  • Song, D. K., H. M. Lee, H. Chang, S. S. Kim, M. Shimada, and K. Okuyama. 2006. Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. J. Aerosol Sci. 37 (5):598–615. doi:10.1016/j.jaerosci.2005.06.003.
  • Sousan, S., A. Gray, C. Zuidema, L. Stebounova, G. Thomas, K. Koehler, and T. Peters. 2018. Sensor selection to improve estimates of particulate matter concentration from a low-cost network. Sensors (Switzerland) 18 (9):3008. doi:10.3390/s18093008.
  • Stabile, L., C. V. Trassierra, G. Dell’Agli, and G. Buonanno. 2013. Ultrafine particle generation through atomization technique: The influence of the solution. Aerosol Air Qual. Res. 13 (6):1667–77. doi:10.4209/aaqr.2013.03.0085.
  • Wang, S. C., and R. C. Flagan. 1989. Scanning electrical mobility spectrometer. J. Aerosol Sci. 20 (8):1485–8. doi:10.1016/0021-8502(89)90868-9.
  • Wang, Y., J. Li, H. Jing, Q. Zhang, J. Jiang, and P. Biswas. 2015. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 49 (11):1063–77. doi:10.1080/02786826.2015.1100710.
  • Wilkes, A. R. 2002. Measuring the filtration performance of breathing system filters using sodium chloride particles. Anaesthesia 57 (2):162–8. doi:10.1046/j.1365-2044.2002.02328.x.
  • Yun, K. M., C. J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama. 2007. Nanoparticle filtration by electrospun polymer fibers. Chem. Eng. Sci. 62 (17):4751–9. doi:10.1016/j.ces.2007.06.007.
  • Zhang, Q., J. Welch, H. Park, C. Y. Wu, W. Sigmund, and J. C. M. Marijnissen. 2010. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J. Aerosol Sci. 41 (2):230–6. doi:10.1016/j.jaerosci.2009.10.001.
  • Zhang, R., C. Liu, P. C. Hsu, C. Zhang, N. Liu, J. Zhang, H. R. Lee, Y. Lu, Y. Qiu, S. Chu, et al. 2016. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 16 (6):3642–9. doi:10.1021/acs.nanolett.6b00771.
  • Zhang, S., H. Liu, F. Zuo, X. Yin, J. Yu, and B. Ding. 2017. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small 13 (10):1603151. doi:10.1002/smll.201603151.
  • Zhu, M., J. Han, F. Wang, W. Shao, R. Xiong, Q. Zhang, H. Pan, Y. Yang, S. K. Samal, F. Zhang, et al. 2017. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 302 (1):1600353. doi:10.1002/mame.201600353.
  • Zulfi, A., M. M. Munir, D. A. Hapidin, A. Rajak, D. Edikresnha, F. Iskandar, and K. Khairurrijal. 2018. Air filtration media from electrospun waste high-impact polystyrene fiber membrane. Mater. Res. Exp. 5 (3):035049. doi:10.1088/2053-1591/aab6ef.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.