5,960
Views
41
CrossRef citations to date
0
Altmetric
Review Articles

Natural sources and experimental generation of bioaerosols: Challenges and perspectives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 547-571 | Received 06 Jul 2019, Accepted 08 Oct 2019, Published online: 08 Nov 2019

References

  • Adams, R. I., S. Bhangar, W. Pasut, E. A. Arens, J. W. Taylor, S. E. Lindow, W. W. Nazaroff, and T. D. Bruns. 2015. Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS One 10(5):e0128022. doi:10.1371/journal.pone.0128022.
  • Afanou, K. A., A. Straumfors, A. Skogstad, T. Nilsen, O. Synnes, I. Skaar, L. Hjeljord, A. Tronsmo, B. J. Green, and W. Eduard. 2014. Submicronic fungal bioaerosols: High-resolution microscopic characterization and quantification. Appl. Environ. Microbiol. 80(22):7122–7130. doi:10.1128/AEM.01740-14.
  • Allegra, S., L. Leclerc, P. A. Massard, F. Girardot, S. Riffard, and S. Pourchez. 2016. Characterization of aerosols containing legionella generated upon nebulization. Sci. Rep. 6:33998.
  • Aller, J. Y., M. R. Kuznetsova, C. J. Jahns, and P. F. Kemp. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36(5–6):801–812. doi:10.1016/j.jaerosci.2004.10.012.
  • Almeria, B., and A. Gomez. 2014. Electrospray synthesis of monodisperse polymer particles in a broad (60 nm–2 μm) diameter range: Guiding principles and formulation recipes. J. Coll. Interface Sci. 417:121–130. doi:10.1016/j.jcis.2013.11.037.
  • Alsved, M., C. J. Fraenkel, M. Bohgard, A. Widell, A. Söderlund-Strand, P. Lanbeck, T. Holmdahl, C. Isaxon, A. Gudmundsson, P. Medstrand, et al. 2019. Sources of airborne norovirus in hospital outbreaks. Clin. Infect. Dis. doi:10.1093/cid/ciz584.
  • Alsved, M., S. Holm, S. Christiansen, M. Smidt, B. Rosati, M. Ling, T. Boesen, K. Finster, M. Bilde, J. Löndahl, et al. 2018. Effect of aerosolization and drying on the viability of Pseudomonas syringae cells. Front. Microbiol. 9:3086. doi:10.3389/fmicb.2018.03086.
  • Amirzadeh, A., and S. Chandra. 2010. Small droplet formation in pneumatic drop-on-demand generator. Exp. Therm. Fluid. Sci. 34(8):1488–1497. doi:10.1016/j.expthermflusci.2010.07.013.
  • Andreas, E. L. 1998. A new sea spray generation function for wind speeds up to 32 ms−1. J. Phys. Oceanography. 28:2175–2184.
  • Anna, S. L. 2016. Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid. Mech. 48(1):285–309. doi:10.1146/annurev-fluid-122414-034425.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2019. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9(2348):1–10. doi:10.1038/s41598-019-38808-z.
  • Astudillo, A.,. S. S. Y. Leung, E. Kutter, S. Morales, and H.-K. Chan. 2018. Nebulization effects on structural stability of bacteriophage PEV 44. Eur. J. Pharm. Biopharm. 125:124–130. doi:10.1016/j.ejpb.2018.01.010.
  • Aylor, D. E. 1990. The role of intermittent wind in the dispersal of fungal pathogens. Annu. Rev. Phytopathol. 28(1):73–92. doi:10.1146/annurev.py.28.090190.000445.
  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes. Mar. Ecol. Prog. Ser. 10:257–263. doi:10.3354/meps010257.
  • Barker, J., and M. Jones. 2005. The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. J. Appl. Microbiol. 99(2):339–347. doi:10.1111/j.1365-2672.2005.02610.x.
  • Barlow, D. F., and A. I. Donaldson. 1973. Comparison of the aerosol stabilities of foot-and-mouth disease virus suspended in cell culture fluid or natural fluids. J. Gen. Virol. 20(3):311–318. doi:10.1099/0022-1317-20-3-311.
  • Beaudoin, S., P. Jaiswal, A. Harrison, J. Laster, K. Smith, M. Sweat, and M. Thomas. 2015. Fundamental forces in particle adhesion. In Particle adhesion and removal, ed. K. L. Mittal and R. Jaiwal, 3–79. Beverley: Scrivener Publishing LLC.
  • Berchebru, L., P. Rameil, J.-C. Gaudin, S. Gausson, G. Larigauderie, C. Pujol, Y. Morel, and V. Ramisse. 2014. Normalization of test and evaluation of biothreat detection systems: Overcoming microbial air content fluctuations by using a standardized reagent bacterial mixture. J. Microbiol. Methods 105:141–145. doi:10.1016/j.mimet.2014.07.013.
  • Berglund, R. N., and B. Y. H. Liu. 1973. Generation of monodisperse aerosol standards. Environ. Sci. Technol. 7.2:147–153. doi:10.1021/es60074a001.
  • Bhangar, S., R. I. Adams, W. Pasut, J. Huffman, E. A. Arens, J. W. Taylor, T. D. Bruns, and W. W. Nazaroff. 2016. Chamber bioaerosol study: Human emissions of size‐resolved fluorescent biological aerosol particles. Indoor Air 26(2):193–206. doi:10.1111/ina.12195.
  • Biddiscombe, M. F., P. J. Barnes, and O. S. Usmani. 2006. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator. J. Aerosol Med. 19(3):245–253. doi:10.1089/jam.2006.19.245.
  • Bischoff, W. E., K. Swett, I. Leng, and T. R. Peters. 2013. Exposure to influenza virus aerosols during routine patient care. J. Infect. Dis. 207(7):1037–1046. doi:10.1093/infdis/jis773.
  • Bishop, A. H., and H. L. Stapleton. 2016. Aerosol and surface deposition characteristics of two surrogates for Bacillus anthracis spores. Appl. Environ. Microbiol. 82(22):6682–6690. doi:10.1128/AEM.02052-16.
  • Blanchard, D. C. 1983. The production, distribution, and bacterial enrichment of the sea-salt aerosol. In The air-sea exchange of gases and particles, ed. P. S. Liss and W. G. N. Slinn, 407–454. Dordrecht, Holland: D. Reidel Pub. Co.
  • Blanchard, D. C., and L. D. Syzdek. 1982. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles. Appl. Environ. Microbiol. 43:1001–1005.
  • Bohannon, J. K., K. Janosko, M. R. Holbrook, J. Barr, D. Pusl, L. Bollinger, L. Coe, L. E. Hensley, P. B. Jahrling, J. Wada, et al. 2016. Safety precautions and operating procedures in an (A)BSL-4 laboratory: 3. Aerobiology. J. Vis. Exp. 116:53602.
  • Bohannon, J. K., M. G. Lackemeyer, J. H. Kuhn, J. Wada, L. Bollinger, P. B. Jahrling, and R. F. Johnson. 2015. Generation and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamber. Inhal. Toxicol. 27(5):247–253. doi:10.3109/08958378.2015.1033570.
  • Bollin, G., J. Plouffe, M. F. Para, and B. Hackman. 1985. Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets. Appl. Environ. Microbiol. 50(5):1128–1131.
  • Bose, M. E., K. C. McCaul, H. Mei, A. Sasman, J. He, W. Kramp, R. Shively, K. Yan, and K. J. Henrickson. 2016. Simulated respiratory secretion for use in the development of influenza diagnostic assays. PLoS One 11(11):e0166800. doi:10.1371/journal.pone.0166800.
  • Bourouiba, L. 2016. A sneeze. New Eng. J. Med. 357(8):e15. doi:10.1056/NEJMicm1501197.
  • Bourouiba, L. 2018. How diseases and epidemics move through a breath of air. TEDMED2018. Accessed July 2019. https://www.tedmed.com/talks/show?id=730067.
  • Bourouiba, L., and J. W. M. Bush. 2013. Drops and bubbles in the environment. In Handbook of environmental fluid dynamics, ed. H.J.S. Fernando, Vol. I, 427–439. Boca Raton, FL: CRC Press, Taylor & Francis Book Inc.
  • Bourouiba, L., E. Dehandschoewercker, and J. W. M. Bush. 2014. Violent respiratory events: On coughing and sneezing. J. Fluid Mech. 745:537–563. doi:10.1017/jfm.2014.88.
  • Bowling, J. D., K. J. O’Malley, W. B. Klimstra, A. L. Hartman, and D. S. Reed. 2019. A vibrating mesh nebulizer as an alternative to the collison 3-jet nebulizer for infectious disease aerobiology. Appl. Environ. Microbiol. 85(17):1–13. doi:10.1128/AEM.00747-19.
  • Brodie, E. L., T. Z. DeSantis, J. P. M. Parker, I. X. Zubietta, Y. M. Piceno, and G. L. Andersen. 2007. Urban aerosols habor diverse and dynamic bacterial populations. PNAS 104 (1):299–204. doi:10.1073/pnas.0608255104.
  • Burrows, S. M., W. Elbert, M. G. Lawrence, and U. Poschl. 2009. Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 9(23):9263–9280. doi:10.5194/acp-9-9263-2009.
  • Caliz, J., X. Triado-Margarit, L. Camarero, and E. O. Casamayor. 2018. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. PNAS 115(48):12229–12234. doi:10.1073/pnas.1812826115.
  • Calvert, G., M. Ghadiri, and R. Tweedie. 2009. Aerodynamic dispersion of cohesive powders: A review of understanding and technology. Adv. Powder Technol. 20(1):4–16. doi:10.1016/j.apt.2008.09.001.
  • Cao-Huang, L., P.-A. Marechal, M. Lê-Thanh, P. Gervais, and Y. Waché. 2008. Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: A guide for prokaryotic and eukaryotic investigation. Biotechnol. J. 3:890–803. doi:10.1002/biot.200700206.
  • Celenk, S., Y. Canitez, A. Bicakci, N. Sapan, and H. Malyer. 2009. An aerobiological study on pollen grains in the atmosphere of North-West Turkey. Environ. Monit. Assess. 158 (1–4):365–380. doi:10.1007/s10661-008-0590-1.
  • Chen, B. T., and W. John. 2001. Instrument calibration. In Aerosol measurement. Principles, techniques and applications, ed. P. A. Baron and K. Willeke, 627–666. New York, NY: Wiley-Interscience.
  • Clauß, M. 2015. Particle size distribution of airborne micro-organisms in the environment—A review. Appl. Agric. Forestry Res. 65:77–100.
  • Clement, M. T. 1961. Effects of freezing, freeze-drying, and storage in the freeze-dried and frozen state on viability of Escherichia coli cells. Can. J. Microbiol. 7(1):99–106. doi:10.1139/m61-012.
  • Colbeck, I., and C. Whitby. 2019. Biological particles in the indoor environment. In Indoor air pollution, ed. R. M. Harrison and R. E. Hester. London: The Royal Society of Chemistry. doi:10.1039/9781788016179-00127.
  • Cole, R. H., S.-Y. Tang, C. A. Siltanen, P. Shahi, J. Q. Zhang, S. Poust, Z. J. Gartner, and A. R. Abate. 2017. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Proc Natl Acad Sci USA 114(33):8728–8733. doi:10.1073/pnas.1704020114.
  • Cox, C. S. 1970. Aerosol survival of Escherichia coli B disseminated from the dry state. Appl. Microbiol. 19(4):604–607.
  • Cox, C. S. 1971. Aerosol survival of Pasteurella tularensis disseminated from the wet and dry states. Appl. Microbiol. 21(3):482–486.
  • Cox, C. S. 1987. The aerobiological pathway of microorganisms. New York, NY: John Wiley & Sons.
  • Cox, C. S., M. C. Bondurant, and M. T. Hatch. 1971. Effects of oxygen on aerosol survival of radiation sensitive and resistant strains of Escherichia coli B. J. Hyg. (Camb). 69:661–672. doi:10.1017/S0022172400021938.
  • Cox, C. S., J. S. Derr, E. G. Flurie, and R. C. Roderick. 1970. Experimental technique for studying aerosols of lyophilized bacteria. Appl. Microbiol. 20(6):927–934.
  • Dabisch, P., K. Bower, B. Dorsey, and L. Wronka. 2012b. Recovery efficiencies for Burkholderia thailandensis from various aerosol sampling media. Front. Cell. Infect. Microbiol. 2(78):1–5.
  • Dabisch, P. A., Z. Xu, J. A. Boydston, J. Solomon, J. K. Bohannon, J. J. Yeager, J. R. Taylor, R. J. Reeder, P. Sayre, J. Seidel, et al. 2017. Quantification of regional aerosol deposition patterns as a function of aerodynamic particle size in rhesus macaques using PET/CT imaging. Inhal. Toxicol. 29(11):506–515. doi:10.1080/08958378.2017.1409848.
  • Dabisch, P., J. Yeager, J. Kline, K. Klinedinst, A. Welsch, and M. L. Pitt. 2012a. Comparison of the efficiency of sampling devices for aerosolized Burkholderia pseudomallei. Inhal. Toxicol. 24(5):247–254. doi:10.3109/08958378.2012.666682.
  • Dark, F. A., and D. S. Callow. 1973. The effect of growth conditions on the survival of airborne E. coli. In Fourth International Symposium on Aerobiology, Oosthoek, Utrecht, Netherlands, ed. J. F. P. Hers and K. C. Winkler, 97–99.
  • DasSarma, P., and S. DasSarma. 2018. Survival of microbes in earth's stratosphere. Curr. Opin. Microbiol. 43:24–30. doi:10.1016/j.mib.2017.11.002.
  • Degois, J., X. Simon, C. Bontemps, P. Leblond, and P. Duquenne. 2019. Characterization of experimental complex fungal bioaerosols: Impact of analytical method on fungal composition measurements. Aerosol Sci. Technol. 53(2):146–159. doi:10.1080/02786826.2018.1557320.
  • Depres, V. R., J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Polsch, et al. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chem. Phy. Metereol. 64:15598. doi:10.3402/tellusb.v64i0.15598.
  • Donaldson, A. I. 1972. The influence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. J. Gen. Virol. 15(1):25–33. doi:10.1099/0022-1317-15-1-25.
  • Douwes, J., P. Thorne, N. Pearce, and D. Heederik. 2003. Bioaerosol health effects and exposure assessment: Progress and prospects. Annal. Occup. Hyg. 47(3):187–200. doi:10.1093/annhyg/meg032.
  • Duan, H., F. J. Romay, C. Li, A. Naqwi, W. Deng, and B. Y. H. Liu. 2016. Generation of monodisperse aerosols by combining aerodynamic flow-focusing and mechanical perturbation. Aerosol Sci. Technol. 50:1–9.
  • Dungan, R. 2010. Board-invited review: Fate and transport of bioaerosols associated with livestock operations and manures. J. Anim. Sci. 88(11):3693–3706. doi:10.2527/jas.2010-3094.
  • Dybwad, M., and G. Skogan. 2017. Aerobiological stability of different species of gram-negative bacteria, including well—2 known biothreat simulants, in single-cell particles and cell cluster s of different composition. Appl. Environ. Microbiol. 83(18):e00823–17. doi:10.1128/AEM.00823-17.
  • Dybwad, M., G. Skogan, and J. M. Blatny. 2014. Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosols applications. Aerosol Sci. Technol. 48(3):282–295. doi:10.1080/02786826.2013.871501.
  • Eggers, J., and E. Villermaux. 2008. Physics of liquid jets. Rep. Prog. Phys. 71(3):036601. doi:10.1088/0034-4885/71/3/036601.
  • Eisner, A. D., and T. B. Martonen. 1988. Simultaneous production of two monodisperse aerosols using a modified spinning-top aerosol generator. Aerosol Sci. Technol. 9(2):105–113. doi:10.1080/02786828808959199.
  • Ellison, J. M. 1967. Adaptation of the spinning top aerosol generator to provide aerosols in the respirable range. Ann. Occup. Hyg. 10(4):363–367. doi:10.1093/annhyg/10.4.363.
  • Eninger, R. M., C. J. Hogan, P. Biswas, A. Adhikari, T. Reponen, and S. A. Grinshpun. 2009. Electrospray versus nebulization for aerosolization and filter testing with bacteriophage particles. Aerosol Sci. Technol. 43(4):298–304. doi:10.1080/02786820802626355.
  • Fabian, P., J. J. McDevitt, W. H. DeHaan, R. O. Fung, B. J. Cowling, K. H. Chan, G. M. Leung, and D. K. Milton. 2008. Influenza virus in human exhaled breath: An observational study. PloS One 3(7):e2691. doi:10.1371/journal.pone.0002691.
  • Faith, S. A., L. P. Smith, A. S. Swatland, and D. S. Reed. 2012. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice. Front. Cell. Infect. Microbiol. 2:1–10.
  • Feazel, L. M., L. K. Baumgartner, K. L. Peterson, D. N. Frank, J. K. Harris, and N. R. Pace. 2009. Opportunistic pathogens enriched in showerhead biofilms. PNAS 106(38):16393–16399. doi:10.1073/pnas.0908446106.
  • Fennelly, K. P., J. W. Martyny, K. E. Fulton, I. M. Orme, D. M. Cave, and L. B. Heifets. 2004. Cough-generated aerosols of Mycobacterium tuberculosis—A new method to study infectiousness. Am. J. Respir. Crit. Care. Med. 169(5):604–609. doi:10.1164/rccm.200308-1101OC.
  • Fields, B. S., R. F. Benson, and R. E. Besser. 2002. Legionella and legionnaires’ disease: 25 years of investigation. Clin. Microbiol. Rev. 15(3):506–526. doi:10.1128/CMR.15.3.506-526.2002.
  • Fife, J. P., H. E. Ozkan, R. C. Derksen, P. S. Grewal, and C. R. Krause. 2005. Viability of a biological pest control agent through hydraulic nozzles. Trans. Am. Soc. Agric. Eng. 48(1):45–54.
  • Fitt, B. D., H. McCartney, and P. Walklate. 1989. The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27(1):241–270. doi:10.1146/annurev.py.27.090189.001325.
  • Fitzgerald, J. W. 1991. Marine aerosols: A review. Atmos. Environ. Part A Gen. Top. 25(3–4):533–545. doi:10.1016/0960-1686(91)90050-H.
  • Fitzhenry, R., D. Weiss, D. Cimini, S. Balter, C. Boyd, L. Alleyne, R. Stewart, N. McIntosh, A. Econome, Y. Lin, et al. 2017. Legionnaires’ disease outbreaks and cooling towers, New York city, New York, USA. Emerg. Infect. Dis. 23(11):1769. doi:10.3201/eid2311.161584.
  • Folmsbee, M., and K. A. Strevett. 1999. Bioaerosol concentration at an outdoor composting center. J. Air Waste Man. Assoc. 49(5):554–561. doi:10.1080/10473289.1999.10463824.
  • Fuentes, E., H. Coe, D. Green, G. de Leeuw, and G. McFiggans. 2010. Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 3(1):141–162. doi:10.5194/amt-3-141-2010.
  • Gallagher, G. 2017. Disneyland cooling towers linked to legionnaires’ disease outbreak. Infect. Dis. Child. 30:16–16.
  • Ganan-Calvo, A. M., and J. M. Gordillo. 2001. Perfectly monodisperse microbubbles by capillary flow-focusing. Phys. Rev. Lett. 87(27):274501. doi:10.1103/PhysRevLett.87.274501.
  • Ganan-Calvo, A. M., J. M. Lopez-Herrera, M. Herrada, A. Ramos, and J. M. Montanero. 2018. Review on the physics of electrospray: From electrokinetics to the operating conditions of single and conical Taylor cone-jets and electrospray. J. Aerosol Sci. 125:32–56. doi:10.1016/j.jaerosci.2018.05.002.
  • Gauthier-Levesque, L., L. Bonifait, N. Turgeon, M. Veillette, P. Perrott, D. Grenier, and C. Duchaine. 2016. Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Res. Notes 9:273. doi:10.1186/s13104-016-2073-8.
  • Ghazanfari, T., A. M. A. Elhissi, Z. Ding, and K. M. G. Taylor. 2007. The influence of fluid physicochemical properties on vibrating-mesh nebulization. Int. J. Pharm. 339(1–2):103–111. doi:10.1016/j.ijpharm.2007.02.035.
  • Gilet, T., and L. Bourouiba. 2014. Rain-induced ejection of pathogens from leaves: Revisiting the mechanism of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54(6):974–984. doi:10.1093/icb/icu116.
  • Gilet, T., and L. Bourouiba. 2015. Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12(104):20141092. doi:10.1098/rsif.2014.1092.
  • Gowda, A. A., A. D. Cuccia, and G. C. Smaldone. 2017. Reliability of vibrating mesh technology. Respir. Care 62(1):65–69. doi:10.4187/respcare.04702.
  • Griffin, D. W., and C. A. Kellogg. 2004. Dust storms and their impact on ocean and human health: Dust in earth’s atmosphere. EcoHealth 1(3):284–295. doi:10.1007/s10393-004-0120-8.
  • Griffin, D. W., N. Kubilay, M. Koçak, M. A. Gray, T. C. Borden, and E. A. Shinn. 2007. Airborne desert dust and aeromicrobiology over the Turkish mediterranean coastline. Atmos. Environ. 41(19):4050–4062. doi:10.1016/j.atmosenv.2007.01.023.
  • Grinshpun, S. A., A. Adhikari, S.-H. Cho, K.-Y. Kim, T. Lee, and T. Reponen. 2007. A small change in the design of a slit bioaerosol impactor significantly improves its collection characteristics. J. Environ. Monitor. 9(8):855–861. doi:10.1039/b702743e.
  • Guha, S., M. Li, M. J. Tarlov, and M. R. Zachariah. 2012. Electrospray-differential mobility analysis of bionanoparticles. Trends Biotechnol. 30(5):291–300. doi:10.1016/j.tibtech.2012.02.003.
  • Gussman, R. A. 1984. Note on the particle size output of collison nebulizers. Am. Ind. Hyg. Assoc. J. 45:B9–B11.
  • Gόrny, R. L., T. Reponen, K. Willeke, E. Robine, M. Boissier, and S. A. Grinshpun. 2002. Fungal fragments as indoor biocontaminants. Appl. Environ. Microbiol. 68:3522–3531. doi:10.1128/AEM.68.7.3522-3531.2002.
  • Haddrell, A. E., and R. J. Thomas. 2017. Aerobiology: Experimental considerations, observations, and future tools. Appl. Environ. Microbiol. 83(17):1–17.
  • Hamilton, K. A., M. T. Hamilton, W. Johnson, P. Jjemba, Z. Bukhari, M. LeChevallier, and C. N. Haas. 2018. Health risks from exposure to legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. Water Res. 134:261–279. doi:10.1016/j.watres.2017.12.022.
  • Handley, B. A., and A. J. F. Webster. 1995. Some factors affecting the airborne survival of bacteria outdoors. J. Appl. Bacteriol. 79(4):368–378. doi:10.1111/j.1365-2672.1995.tb03150.x.
  • Harnish, D., B. K. Heimbuch, M. McDonald, K. Kinney, M. Dion, R. Stote, V. Rastogi, L. Smith, L. Wallace, A. Lumley, et al. 2014. Standard method for deposition of dry, aerosolized, silica coated bacillus spores onto inanimate surfaces. J. Appl. Microbiol. 117(1):40–49. doi:10.1111/jam.12509.
  • Harris, D. M., T. Liu, and J. W. M. Bush. 2015. A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56:83.
  • Hau, B., and C. de Vallavieille-Pope. 2006. Wind-dispersed diseases. In The epidemiology of plant diseases, ed. B. M. Cooke, D. G. Jones, and B. Kaye, 387–416. New York, NY: Springer.
  • Hayakawa, I., and C. P. Poon. 1965. Short storage studies on the effect of temperature and relative humidity on the viability of airborne bacteria. Am. Ind. Hyg. J. 26(2):150–160.
  • Heldal, K. K., N. O. Breum, B. H. Nielsen, and K. Wilkins. 2001. Experimental generation of organic dust from compostable household waste. Waste Manag. Res. 19(2):98–107. doi:10.1177/0734242X0101900202.
  • Heo, K. J., C. E. Lim, H. B. Kim, and B. U. Lee. 2017. Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. J. Aerosol Sci. 104:58–65. doi:10.1016/j.jaerosci.2016.11.008.
  • Hogan, C. J., E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T. Angenent, and P. Biswas. 2005. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. Appl. Microbiol. 99(6):1422–1434. doi:10.1111/j.1365-2672.2005.02720.x.
  • Hood, A. M. 1961. Infectivity of Pasteurella tularensis clouds. J. Hyg. Camb. 59:497–504. doi:10.1017/S002217240003919X.
  • Hospodsky, D., J. Qian, W. W. Nazaroff, N. Yamamoto, K. Bibby, H. Rismani-Yazdi, and J. Peccia. 2012. Human occupancy as a source of indoor airborne bacteria. PloS One 7(4):e34867. doi:10.1371/journal.pone.0034867.
  • Huang, C. Y., C. C. Lee, F. C. Li, Y. P. Ma, and H. J. J. Su. 2002. The seasonal distribution of bioaerosols in municipal landfill sites: A 3-yr study. Atmos. Environ. 36(27):4385–4395. doi:10.1016/S1352-2310(02)00322-9.
  • Ibrahim, E., D. Harnish, K. Kinney, B. Heimbuch, and J. Wander. 2015. An experimental investigation of the performance of a collison nebulizer generating H1N1 influenza aerosols. J. Biotechnol. Biotechnol. Equip. 29(6):1142–1148. doi:10.1080/13102818.2015.1059736.
  • Ijaz, M. K., S. A. Sattar, C. M. Johnson-Lussenburg, V. S. Springthorpe, and R. C. Nair. 1985. Effect of relative humidity, atmospheric temperature, and suspending medium on the airborne survival of human rotavirus. Can. J. Microbiol. 31(8):681–685. doi:10.1139/m85-129.
  • Inizan, M. 2018. Turbulence-particle interactions on surfaces. SM Thesis, Massachusetts Institute of Technology, USA.
  • Ionkin, N., and D. M. Harris. 2018. Note: A versatile 3D-printed droplet-on-demand generator. Rev. Sci. Instrum. 89(11):116103. doi:10.1063/1.5054400.
  • Johnson, D., R. Lynch, C. Marshall, K. Mead, and D. Hirst. 2013a. Aerosol generation by modern flush toilets. Aerosol Sci. Technol. 47(9):1047–1057. doi:10.1080/02786826.2013.814911.
  • Johnson, D. L., K. D. Carlson, T. A. Pearce, N. A. Esmen, and B. N. Thomas. 1999. Effects of nebulization time and pressure on lipid microtubule suspension and aerosol. Aerosol Sci. Technol. 30(2):211–222. doi:10.1080/027868299304796.
  • Johnson, D. L., K. R. Mead, R. A. Lynch, and D. V. Hirst. 2013b. Lifting the lid on toilet plume aerosol: A literature review with suggestions for future research. Am. J. Infect. Control 41(3):254–258. doi:10.1016/j.ajic.2012.04.330.
  • Johnson, D. L., T. A. Pearce, and N. A. Esmen. 1999. The effect of phosphate buffer on aerosol size distribution of nebulized Bacillus subtilis and Pseudomonas fluorescens bacteria. Aerosol Sci. Technol. 30(2):202–210. doi:10.1080/027868299304787.
  • Johnson, G. R., and L. Morawska. 2009. The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv. 22(3):229–237. doi:10.1089/jamp.2008.0720.
  • Jones, A. M., and R. M. Harrison. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Sci. Total Environ. 326(1–3):151–180. doi:10.1016/j.scitotenv.2003.11.021.
  • Joung, Y. S., and C. R. Buie. 2015. Aerosol generation by raindrop impact on soil. Nat Commun. 6:6083.doi:10.1038/ncomms7083.
  • Joung, Y. S., Z. Ge, and C. R. Buie. 2017. Bioaerosol generation by raindrops on soil. Nat Commun. 8:14668.doi:10.1038/ncomms14668.
  • Jung, J. H., J. E. Lee, and S. S. Kim. 2009. Evaluation method for spore concentration uniformity on a fungal substrate: Use of a real-time aerosolization technique. Environ. Eng. Sci. 26(4):861–866.
  • Jung, S., S. Staples, J. Dabiri, A. Marsden, M. Prakash, K. Davis, S. Shadden, T. Savin, L. Bourouiba, L., and J. Sznitman. 2016. Invited Report on Recent Trends in Mechanics. Research trends in biological fluid dynamics. US National Committee on Theoretical and Applied Mechanics (USN/TAM). US National Academies of Sciences, Engineering, and Medicine, Washington DC, USA.
  • Kanaani, H., M. Hargreaves, J. Smith, Z. Ristovski, V. Agranovski, and L. Morawska. 2008. Performance of UVAPS with respect to detection of airborne fungi. J. Aerosol. Sci. 39(2):175–189. doi:10.1016/j.jaerosci.2007.10.007.
  • Karra, S., and E. Katsivela. 2007. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a mediterranean site. Water Res. 41(6):1355–1365. doi:10.1016/j.watres.2006.12.014.
  • Katial, R. K., C. Reisner, A. Buchmeier, B. B. Bartelson, and H. S. Nelson. 2000. Comparison of three commercial ultrasonic nebulizers. Ann. Allergy Asthma Immunol. 84(2):255–261. doi:10.1016/S1081-1206(10)62763-9.
  • Kellogg, C. A., and D. W. Griffin. 2006. Aerobiology and the global transport of desert dust. Trend. Ecol. Evol. 21(11):638–644. doi:10.1016/j.tree.2006.07.004.
  • Kim, J. S., and Y. H. Je. 2012. Milling effect as the control efficacy of spray-dried Bacillus thuringiensis technical powder against diamondback moths. Pest Manag. Sci. 68(3):321–323. doi:10.1002/ps.2330.
  • Kim, K., W. Kim, S. Hwa Yun, J. Hyun Lee, S. Kim, and B. U. Lee. 2008. Use of an electrospray for the generation of bacterial bioaerosols. J. Aerosol Sci. 39(4):365–372. doi:10.1016/j.jaerosci.2007.12.006.
  • Kim, S., H. Park, H. A. Gruszewski, D. G. Schmale, III, and J. Sunghwan. 2019. Vortex-induced dispersal of a plant pathogen by raindrop impact. Proc. Natl. Acad. Sci. USA 116(11):4917–4922. doi:10.1073/pnas.1820318116.
  • Kooij, S., R. Sijs, M. M. Denn, E. Villermaux, and D. Bonn. 2018. What determines the drop size in sprays? Phys. Rev. X 8(3):031019. doi:10.1103/PhysRevX.8.031019.
  • Kormuth, K. A., K. Lin, A. J. Prussin, I. I. E. P. Vejerano, A. J. Tiwari, S. S. Cox, M. M. Myerburg, S. S. Lakdawala, and L. C. Marr. 2018. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity. J. Infect. Dis. 218(5):739–747. doi:10.1093/infdis/jiy221.
  • Kormuth, K. A., K. Lin, Z. Qian, M. M. Myerburg, L. C. Marr, and S. S. Lakdawala. 2019. Environmental persistence of influenza virus is dependent upon virus type and host origin. mSphere 4(4):1–14. doi:10.1128/mSphere.0052-19.
  • Lacey, J. 1991. Aggregation of spores and its effect on aerodynamic behaviour. Grana 30(2):437–455. doi:10.1080/00173139109432005.
  • Langre, E. 2008. Effects of wind on plants. Ann. Rev. Fluid Mech. 40(1):141–168.
  • Lee, B. U., J. K. Young, H. L. Chang, H. Y. Sun, B. Gwi-Nam, and J. Jun-Ho. 2008. Development of a fungal spore aerosol generator: Test with Cladosporium cladosporioides and Penicillium citrinum. J. Microbiol. Biotechnol. 18(4):795–798.
  • Lefebvre, A. H., and V. G. McDonnell. 2017. Atomization and sprays, 2nd ed., 1–284. Florida, Fl: CRC Press.
  • Lejeune, S., T. Gilet, and L. Bourouiba. 2018. Edge-effect: Liquid sheet and droplets formed by drop impact close to an edge. Phys. Rev. Fluid. 3:083601.
  • Lever, M. S., A. Williams, and A. M. Bennett. 2000. Survival of mycobacterial species in aerosols generated from artificial saliva. Lett. Appl. Microbiol. 31(3):238–241. doi:10.1046/j.1365-2672.2000.00807.x.
  • Li, H., X.-Y. Zhou, X.-R. Yang, Y.-G. Zhu, Y.-W. Hong, and J.-Q. Su. 2019. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci. Total Environ. 665:61–68. doi:10.1016/j.scitotenv.2019.01.367.
  • Li, J., L. Zhou, X. Zhang, C. Xu, L. Dong, and M. Yao. 2016. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmos. Environ. 124:404–412. doi:10.1016/j.atmosenv.2015.06.030.
  • Lighthart, B. 1994. Physics of microbial bioaerosols. In Atmospheric microbial aerosols: Theory and applications, ed. B. Lighthart and A. J. Mohr, 5–27. Boston, MA: Springer.
  • Lighthart, B., and B. T. Shaffer. 1997. Increased airborne bacterial survival as a function of particle content and size. Aerosol Sci. Technol. 27(3):439–446. doi:10.1080/02786829708965483.
  • Lindsley, W. G., T. A. Pearce, J. B. Hudnall, K. A. Davis, S. M. Davis, M. A. Fisher, R. Khakoo, J. E. Palmer, K. E. Clark, I. Celik, et al. 2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J. Occup. Environ. Hyg. 9(7):443–449. doi:10.1080/15459624.2012.684582.
  • Lis, D. O., K. Ulfig, A. Wlazło, and J. S. Pastuszka. 2004. Microbial air quality in offices at municipal landfills. J. Occup. Environ. Hyg. 1(2):62–68. doi:10.1080/15459620490275489.
  • Liu, B. Y. H., and K. W. Lee. 1975. An aerosol generator of high stability. Am. Ind. Hyg. Assoc. J. 36(12):861–865. doi:10.1080/0002889758507357.
  • Lofgren, E., N. H. Fefferman, Y. N. Naumov, J. Gorski, and E. N. Naumova. 2007. Influenza seasonality: Underlying causes and modeling theories. J. Virol. 81(11):5429–5436. doi:10.1128/JVI.01680-06.
  • Löndahl, J. 2014. Physical and biological properties of bioaerosol. In Bioaerosol detection technologies, ed. P. Jansson, G. Olofsson, and T. Tjärnhage, 33–48. New York, NY: Springer-Verlag.
  • MacCartney, H. A. 1994. Dispersal of spores and pollen from crops. Grana 33:76–80.
  • Madden, L. V. 1997. Effects of rain on splash dispersal of fungal pathogens. Can. J. Plant Pathol. 19(2):225–230. doi:10.1080/07060669709500557.
  • Mainelis, G., D. Berry, A. H. Reoun, M. Yao, K. DeVoe, D. E. Fennell, and R. Jaeger. 2005. Design and performance of a single-pass bubbling bioaerosol generator. Atmos. Environ. 39(19):3521–3535. doi:10.1016/j.atmosenv.2005.02.043.
  • Marple, V. A., B. Y. H. Liu, and K. L. Rubow. 1978. A dust generator for laboratory use. Am. J. Ind. Hyg. Assoc. 39(1):26–32. doi:10.1080/0002889778507709.
  • Marthi, B., B. T. Shaffer, B. Lighthart, and L. Ganio. 1991. Resuscitation effects of catalase on airborne bacteria. Appl. Environ. Microbiol. 57(9):2775–2776.
  • Martin-Banderas, L., M. Flores-Mosquera, P. Riesco-Cheuca, A. Rodriguez-Gil, A. Cebolla, S. Chavez, and A. M. Ganan-Calvo. 2005. Flow-focusing: A versatile technology to produce size-controlled and specific-morphology microparticles. Small 1(7):688–692. doi:10.1002/smll.200500087.
  • Masuda, H. 2009. Dry dispersion of fine particles in gaseous phase. Adv. Powder Technol. 20(2):113–122. doi:10.1016/j.apt.2009.02.001.
  • May, K. R. 1949. An improved spinning-top homogeneous spray apparatus. J. Appl. Phys. 20(10):932–938. doi:10.1063/1.1698255.
  • May, K. R. 1966. Spinning-top homogeneous aerosol generator with shock-proof mounting. J. Sci. Instrum. 43(11):841–842. doi:10.1088/0950-7671/43/11/418.
  • May, K. R. 1973. The collison nebulizer: Description, performance and application. J. Aerosol Sci. 4(3):235–238.
  • May, N. W., N. E. Olson, M. Panas, J. L. Axson, P. S. Tirella, R. M. Kirpes, R. L. Craig, M. J. Gunsch, S. China, A. Laskin, et al. 2018. Aerosol emissions from great Lakes harmful algal blooms. Environ. Sci. Technol. 52(2):397–405. doi:10.1021/acs.est.7b03609.
  • McDermid, A. S., and M. S. Lever. 1996. Survival of Salmonella enteritidis PT4 and salm. Typhimurium swindon in aerosols. Lett. Appl. Microbiol. 23(2):107–109. doi:10.1111/j.1472-765X.1996.tb00042.x.
  • Melton, P. M., P. K. P. Burnell, and R. M. Harrison. 1989. The spinning top aerosol generator (STAG) MkII—A critical appraisal. J. Aerosol Sci. 20(8):1605–1608. doi:10.1016/0021-8502(89)90898-7.
  • Mescioglu, E., E. Rahav, N. Belkin, P. Xian, J. M. Eizenga, A. Vichik, B. Herut, and A. Paytan. 2019. Aerosol microbiome over the mediterranean sea diversity and abundance. Atmosphere 10(8):440. doi:10.3390/atmos10080440.
  • Metcalf, A. R., S. Narayan, and C. S. Dutcher. 2018. A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Sci. Technol. 52(3):310–329. doi:10.1080/02786826.2017.1408952.
  • Miller, W. S., R. A. Scherff, C. R. Piepoli, and L. S. Idoine. 1961. Physical tracers for bacterial aerosols. Appl. Microbiol. 9:248–251.
  • Millner, P. D. 2009. Bioaerosols associated with animal production operations. Bioresour. Technol. 100(22):5379–5385. doi:10.1016/j.biortech.2009.03.026.
  • Milstone, L. M. 2004. Epidermal desquamation. J. Dermatol. Sci. 36(3):131–140. doi:10.1016/j.jdermsci.2004.05.004.
  • Minov, S. V., F. Cointault, J. Vangeyte, J. G. Pieters, and D. Nuyttens. 2015. Droplet generation and characterization using a piezoelectric droplet generator and high speed imaging techniques. Crop. Protect. 69:18–27. doi:10.1016/j.cropro.2014.11.012.
  • Mitchell, J. P. 1984. The production of aerosols from aqueous solutions using the spinning top generator. J. Aerosol Sci. 15(1):35–45. doi:10.1016/0021-8502(84)90054-5.
  • Morris, C. E., D. C. Sands, B. A. Vinatzer, C. Glaux, C. Guilbaud, A. Buffière, S. Yan, H. Dominguez, and B. M. Thompson. 2008. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2(3):321–334. doi:10.1038/ismej.2007.113.
  • Mulholland, G. W., D. R. Chen, and D. Y. H. Pui. 2001. Comparison of size distribution of polystyrene spheres produced by pneumatic and electrospray nebulization. AIP Conf. Proc. 550:322–326.
  • Najlah, M., I. Parveen, M. A. Alhnan, W. Ahmed, A. Faheem, D. A. Phoenix, K. M. Taylor, and A. Elhissi. 2014. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulizers. Int. J. Pharm.461(1–2):234–241. doi:10.1016/j.ijpharm.2013.11.022.
  • Ng, T. W., M. Ip, C. Y. H. Chao, J. W. Tang, K. P. Lai, S. C. Fu, W. T. Leung, and K. M. Lai. 2018. Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Appl. Microbiol. Biotechnol. 102(14):6257–6267. doi:10.1007/s00253-018-9083-5.
  • Niklas, K. J. 1985. The aerodynamics of wind pollination. Bot. Rev. 51(3):328–386. doi:10.1007/BF02861079.
  • Niven, R. W., T. M. Carvajal, and H. Schreier. 1992. Nebulization of liposomes III. The effects of operating conditions and local environment. Pharm. Res. 09(4):515–520.
  • O'Dowd, C. D., and G. De Leeuw. 2007. Marine aerosol production: A review of the current knowledge. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365:1753–1774. doi:10.1098/rsta.2007.2043.
  • O'Dowd, C. D., M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, and J.-P. Putaud. 2004. Biogenically driven organic contribution to marine aerosol. Nature 431:676. doi:10.1038/nature02959.
  • Otero-Fernandez, M.,  Thomas, R. J. N. J. Garton, A. A. Hudson. Haddrell, and J. P. Reid. 2019. Assessing the airborne survival of bacteria I populations of aerosol droplets with a novel technology. J. R. Soc. Interface 16(150):1–11. doi:10.1098/rsif.2018.0779..
  • Perrott, P., N. Turgeon, L. Gauthier-Levesque, and C. Duchaine. 2017. Preferential aerosolization of bacteria in bioaerosols generated in vitro. J. Appl. Microbiol. 123(3):688–697. doi:10.1111/jam.13514.
  • Phillpotts, R. J., R. J. Thomas, R. J. Beedham, S. D. Platt, and C. A. Vale. 2010. The cystovirus phi6 as a simulant for venezuelan equine encephalitis virus. Aerobiologia 26(4):301–309. doi:10.1007/s10453-010-9166-y.
  • Pillai, S. D., and S. C. Ricke. 2002. Review/synthèse bioaerosols from municipal and animal wastes: Background and contemporary issues. Can. J. Microbiol. 48(8):681–696. doi:10.1139/w02-070.
  • Pokharel, L., P. Parajuli, L. Li, E. J. Chng, and R. Gopalakrishnan. 2019. An ultrasonic feeding mechanism for continuous aerosol generation from cohesive powders. Aerosol Sci. Technol. 53(3):321–331. doi:10.1080/02786826.2018.1559920.
  • Polymenakou, P. N., M. Mandalakis, E. G. Stephanou, and A. Tselepides. 2008. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environ. Health Perspect. 116(3):292–296.
  • Popinet, S. 2018. Numerical models of surface tension. Ann. Rev. Fluid Mech. 50(1):49–75. doi:10.1146/annurev-fluid-122316-045034.
  • Poulain, S., and L. Bourouiba. 2018. Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces. Phys. Rev. Lett. 121(20):204502. doi:10.1103/PhysRevLett.121.204502.
  • Poulain, S., and L. Bourouiba. 2019. Disease transmission via drops and bubbles. Phys. Today 72(5):70.
  • Poulain, S., E. Villermaux, and L. Bourouiba. 2018. Ageing and burst of surface bubbles. J. Fluid. Mech. 851:636–671. doi:10.1017/jfm.2018.471.
  • Prenni, A. J., R. L. Siefert, T. B. Onasch, M. A. Tolbert, and P. J. Demott. 2000. Design and characterization of a fluidized bed aerosol generator: A source for dry, submicrometer aerosol. Aerosol Sci. Technol. 32(5):465–481. doi:10.1080/027868200303588.
  • Pritchard, J. N., R. H. M. Hatley, J. Denyer, and D. von Hollen. 2018. Mesh nebulizers have become the first choice for new nebulized pharmaceutical drug developments. Ther. Deliv. 9(2):121–136. doi:10.4155/tde-2017-0102.
  • Prussin, A. J., and L. C. Marr. 2015. Sources of micro-organisms in the built environment. Microbiome 3(1):78. doi:10.1186/s40168-015-0144-z.
  • Pytko-Polonczyk, J. J., A. Jakubik, A. Przeklasa-Bierowiec, and B. Muszynska. 2017. Artificial saliva and its use in biological experiments. J. Physiol. Pharmacol. 68(6):807–813.
  • Qian, J., D. Hospodsky, N. Yamamoto, W. W. Nazaroff, and J. Peccia. 2012. Size‐resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22(4):339–351. doi:10.1111/j.1600-0668.2012.00769.x.
  • Ratnesar-Shumate, S.,. M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. A. Baker, R. Quizon, J. Quizon, A. Proescher, et al. 2011. Improved method for the evaluation of real-time biological aerosol detection technologies. Aero. Sci. Technol. 45(5):635–644. doi:10.1080/02786826.2010.551144.
  • Reponen, T., K. Willeke, V. Ulevicius, A. Reponen, and S. A. Grinshpun. 1996. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. Atmos. Environ. 30(23):3967–3974. doi:10.1016/1352-2310(96)00128-8.
  • Reponen, T., K. Willeke, V. Ulevicius, S. A. Grinshpun, and J. Donnelly. 1997. Techniques for dispersion of microorganisms into air. Aerosol Sci. Technol. 27(3):405–421. doi:10.1080/02786829708965481.
  • Resch, F., J. Darrozes, and G. Afeti. 1986. Marine liquid aerosol production from bursting of air bubbles. J. Geophys. Res. 91(C1):1019–1029. doi:10.1029/JC091iC01p01019.
  • Roper, M., and A. Seminara. 2019. Mycofluidics: The fluid mechanics of fungal adaptation. Ann. Rev. Fluid Mech. 51(1):511–538. doi:10.1146/annurev-fluid-122316-045308.
  • Roper, M., A. Seminar, M. M. Bandi, A. Cobb, H. R. Dillard, and A. Pringle. 2010. Dispersal of fungal spores on a cooperatively generated wind. Proc. Natl. Acad. Sci. USA 107(41):17474–17479. doi:10.1073/pnas.1003577107.
  • Roses-Codinachs, M., M. Suarez-Cervera, J. Marquez, and J. Torres. 1992. An aerobiological study of pollen grains and fungal spores of Barcelona (Spain). Aerobiologia 8(2):255–265. doi:10.1007/BF02071634.
  • Rule, A. M., K. J. Schwab, J. Kesavan, and T. J. Buckley. 2009. Assessment of bioaerosol generation and sampling efficiency based on Pantoea agglomerans. Aerosol Sci. Technol. 43(6):620–628. doi:10.1080/02786820902806709.
  • Rutkowski, S., T. Si, M. Gai, J. Frueh, and Q. He. 2018. Hydrodynamic electrospray ionization jetting of calcium alginate particles: Effect of spray-mode, spraying distance and concentration. RSC Adv. 8(43):24243–24249. doi:10.1039/C8RA03490G.
  • Ruzycki, C. A., E. Javaheri, and W. H. Finlay. 2013. The use of computational fluid dynamics in inhaler design. Expert Opin. Drug. Deliv. 10(3):307–323. doi:10.1517/17425247.2013.753053.
  • Sánchez-Monedero, M., M. Aguilar, R. Fenoll, and A. Roig. 2008. Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Res. 42(14):3739–3744. doi:10.1016/j.watres.2008.06.028.
  • Santarpia, J. L., Y.-L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick. 2012. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric ageing. Opt. Express 20(28):29867–29881. doi:10.1364/OE.20.029867.
  • Šantl-Temkiv, T., U. Gosewinkel, P. Starnawski, M. Lever, and K. Finster. 2018. Aeolian dispersal of bacteria in southwest Greenland: Their sources, abundance, diversity and physiological states. FEMS Microbiol. Ecol. 94(4):1–10. doi:10.1093/femsec/fiy031.
  • Scharfman, B. E., A. H. Techet, J. W. M. Bush, and L. Bourouiba. 2016. Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 57(2):1–9. doi:10.1007/s00348-015-2078-4..
  • Simon, X., and P. Duquenne. 2013. Feasibility of generating peaks of bioaerosols for laboratory experiments. Aerosol Air. Qual. Res. 13(3):877–886. doi:10.4209/aaqr.2012.12.0340.
  • Simon, X., P. Duquenne, V. Koehler, C. Piernot, C. Coulais, and M. Faure. 2011. Generation of actinomycetes aerosols containing spores and mycelium: Performances of a liquid bubbling aerosolizer. J. Aerosol Sci. 42(8):517–531.
  • Simon, X., P. Duquenne, V. Koehler, C. Piernot, C. Coulais, and M. Faure. 2013. Aerosolization of Escherichia coli and associated endotoxin using an improved bubbling bioaerosol generator. Aerosol Sci. Technol. 47(2):158–168.
  • Sinclair, R. G., J. B. Rose, S. A. Hashsham, C. P. Gerba, and C. N. Haas. 2012. Criteria for selection of surrogates used to study the fate and control of pathogens in the environment. Appl. Environ. Microbiol. 78(6):1969–1977. doi:10.1128/AEM.06582-11.
  • Soleimani, Z., G. Goudarzi, A. Sorooshian, M. B. Marzouni, and H. Maleki. 2016. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol. Atmos. Environ. 138:135–143. doi:10.1016/j.atmosenv.2016.05.023.
  • Stone, R. C., and D. L. Johnson. 2002. A note on the effect of nebulization time and pressure on the culturability of Bacillus subtilis and Pseudomonas fluorescens. Aerosol Sci. Technol. 36(5):536–539.
  • Taha, M. P. M., G. H. Drew, P. J. Longhurst, R. Smith, and S. J. Pollard. 2006. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmos. Environ. 40(6):1159–1169. doi:10.1016/j.atmosenv.2005.11.010.
  • Taha, M. P. M., S. J. Pollard, U. Sarkar, and P. Longhurst. 2005. Estimating fugitive bioaerosol releases from static compost windrows: Feasibility of a portable wind tunnel approach. Waste Manag. 25(4):445–450. doi:10.1016/j.wasman.2005.02.013.
  • Tang, P., D. F. Fletcher, H.-K. Chan, and J. A. Raper. 2008. Simple and cost-effective powder disperser for aerosol particle size measurement. Powder Technol. 187(1):27–36. doi:10.1016/j.powtec.2008.01.003.
  • Taylor, P. E., R. C. Flagan, A. G. Miguel, R. Valenta, and M. M. Glovsky. 2004. Birch pollen rupture and the release of aerosols of respirable allergens. Clin. Exp. Allergy 34(10):1591–1596. doi:10.1111/j.1365-2222.2004.02078.x.
  • Taylor, P. E., R. C. Flagan, R. Valenta, and M. M. Glovsky. 2002. Release of allergens as respirable aerosols: A link between grass pollen and asthma. J. Allergy Clin. Immunol. 109(1):51–56. doi:10.1067/mai.2002.120759.
  • Terzieva, S., J. Donnelly, V. Ulevicius, S. A. Grinshpun, K. Willeke, G. N. Stelma, and K. P. Brenner. 1996. Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Appl. Environ. Microbiol. 62(7):2264–2272.
  • Thomas, R. J., D. Webber, W. Sellors, A. Collinge, A. Frost, A. J. Stagg, S. C. Bailey, P. N. Jayasekera, R. R. Taylor, S. Eley, et al. 2008. Characterization and deposition of respirable large and small-particle bioaerosols. Appl. Environ. Microbiol. 74(20):6437–6443. doi:10.1128/AEM.01194-08.
  • Thomas, R. J., D. Webber, W. Sellors, A. Collinge, A. Frost, A. J. Stagg, S. C. Bailey, P. N. Jayasekera, R. R. Taylor, S. Eley, et al. 2009. Generation of large droplet aerosols within microbiological containment using a novel flow-focussing technique. Aerobiologia 25(2):75–84. doi:10.1007/s10453-009-9111-0.
  • Thomas, Y., G. Vogel, W. Wunderli, P. Suter, M. Witschi, D. Koch, C. Tapparel, and L. Kaiser. 2008. Survival of influenza virus on banknotes. Appl. Environ. Microbiol. 74(10):3002–3007. doi:10.1128/AEM.00076-08.
  • Thomson, R., C. Tolson, R. Carter, C. Coulter, F. Huygens, and M. Hargreaves. 2013. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol. 51(9):3006–3011. doi:10.1128/JCM.00899-13.
  • Thorne, P. S. 1994. Experimental grain dust atmospheres generated by wet and dry aerosolization techniques. Am. J. Ind. Med. 25(1):109–112. doi:10.1002/ajim.4700250129.
  • Tiwari, A. J., G. C. Fields, and L. C. Marr. 2013. A cost-effective method of aerosolizing dry powdered nanoparticles. Aerosol Sci. Technol. 47(11):1267–1275. doi:10.1080/02786826.2013.834292.
  • Trail, F., I. Gaffoor, and S. Vogel. 2005. Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet. Biol. 42(6):528–533. doi:10.1016/j.fgb.2005.03.008.
  • Traverso, G.,  S. Laken, C.-C. Lu, R. Maa, R. Langer, and L. Bourouiba. 2013. Fluid fragmentation from hospital toilets. Am. Phys. Soc. 1310:5511.
  • Trouwborst, T., and S. Kuyper. 1974. Inactivation of bacteriophage T3 in aerosols: Effect of prehumidification on survival after spraying from solutions of salt, peptone, and saliva. Appl. Microbiol. 27(5):834–837.
  • Tsai, C.-J., G.-Y. Lin, C.-N. Liu, C.-E. He, and C.-W. Chen. 2012. Characteristic of nanoparticles generated from different nano = powders by using different dispersion methods. J. Nanopart. Res. 14(777):1–12.
  • Turgeon, N., K. Michel, T.-L. Ha, E. Robine, S. Moineau, and C. Duchaine. 2016. Resistance of aerosolized bacterial viruses to four germicidal products. PLoS One 11(12):e0168815. doi:10.1371/journal.pone.0168815.
  • Turgeon, N., M.-J. Toulouse, B. Martel, S. Moineau, and C. Duchaine. 2014. Comparison of five bacteriophages as models for viral aerosol studies. Appl. Environ. Microbiol. 80(14):4242–4250. doi:10.1128/AEM.00767-14.
  • Ulmke, H., T. Wriedt, and K. Bauckhage. 2001. Piezoelectric droplet generator for the calibration of Particle-Sizing instruments. Chem. Eng. Technol. 24(3):265–268.
  • Vaughn, B. S., P. J. Tracey, and A. J. Trevitt. 2016. Drop-on-demand microdroplet generation: A very stable platform for single-droplet experimentation. RSC Adv. 6(65):60215–60222. doi:10.1039/C6RA08472A.
  • Vejerano, E. P., and A. L. C. Marr. 2018. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. R. Soc. Interface 15(139):1–10. doi:10.1098/rsif.2017.0939.
  • Verani, M., R. Bigazzi, and A. Carducci. 2014. Viral contamination of aerosol and surfaces through toilet use in health care and other settings. Am. J. Infect. Control 42(7):758–762. doi:10.1016/j.ajic.2014.03.026.
  • Veron, F. 2015. Ocean spray. Annu. Rev. Fluid Mech. 47(1):507–538. doi:10.1146/annurev-fluid-010814-014651.
  • Verreault, D., C. Duchaine, M. Marcoux-Voiselle, N. Turgeon, and C. Roy. 2014. Design of an environmentally controlled rotating chamber for bioaerosol ageing studies. Inhal. Toxicol. 26(9):554–558. doi:10.3109/08958378.2014.928763.
  • Verreault, D., S. K. Sivasubramani, J. D. Talton, L. A. Doyle, J. D. Reddy, S. Z. Killeen, P. J. Didier, P. A. Marx, and C. J. Roy. 2012. Evaluation of inhaled cidofovir as postexposure prophylactic in an aerosol rabbitpox model. Antiviral Res. 93(1):204–208. doi:10.1016/j.antiviral.2011.11.013.
  • Vimala Devi, P. S., P. Duraimurugan, and K. S. V. P. Chandrika. 2019. Bacillus thuringiensis-based nanoparticles for crop protection. In Nano-biopesticides today and future perspectives, ed. O. Koul, 249–260. Cambridge, MA: Academic Press.
  • Wainwright, C. E., M. W. France, P. O’Rourke, S. Anuj, T. J. Kidd, M. D. Nissen, T. P. Sloots, C. Coulter, Z. Ristovski, M. Hargreaves, et al. 2009. Cough-generated aerosols of Pseudomonas aeruginosa and other gram-negative bacteria from patients with cystic fibrosis. Thorax 64(11):926–931. doi:10.1136/thx.2008.112466.
  • Walls, P., J. Bird, and L. Bourouiba. 2014. Moving with bubbles: A review of the interactions between bubbles and the microorganisms that surround them. Integr. Comp. Biol. 54(6):1014–1025. doi:10.1093/icb/icu100.
  • Wang, H. X., T. Reponen, A. Adhikari, K. Willeke, and S. A. Grinshpun. 2004. Effect of fluid type and microbial preparation on the aerosolization of microorganisms from metal working fluids. Aerosol Sci. Technol. 38(12):1139–1148. doi:10.1080/027868290891488.
  • Wang, Y.-B., A. B. Watts, J. I. Peters, S. Liu, A. Batra, and R. O. Williams. 2014. In vitro and in vivo performance of dry powder inhalation formulations: Comparison of particles prepared by thin film freezing and micronization. AAPS PharmSciTech. 15(4):981–993. doi:10.1208/s12249-014-0126-7.
  • Wang, Y., and L. Bourouiba. 2017. Drop impact on small surfaces: Thickness and velocity profiles of the expanding sheet in the air. J. Fluid Mech. 814:510–534. doi:10.1017/jfm.2017.18.
  • Wang, Y., and L. Bourouiba. 2018a. Unsteady sheet fragmentation: Droplet sizes and speeds. J. Fluid Mech. 848:946–967. doi:10.1017/jfm.2018.359.
  • Wang, Y., and L. Bourouiba. 2018b. Non-isolated drop impacts. J. Fluid Mech. 835:24–44. doi:10.1017/jfm.2017.755.
  • Wang, Y., H. Lan, L. Li, K. Yang, J. Qu, and J. Liu. 2018b. Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: Survival factors, generation sources, and mechanisms. Sci. Rep. 8(1):9362.
  • Wang, Y., R. Dandekar, N. Bustos, S. Poulain, and L. Bourouiba. 2018a. Universal rim thickness in unsteady sheet fragmentation. Phys. Rev. Lett. 120(20):204503. doi:10.1103/PhysRevLett.120.204503.
  • Wiedmann, T. S., and A. Ravichandran. 2001. Ultrasonic nebulization system for respiratory drug delivery. Pharma. Develop. Technol. 6(1):83–89. doi:10.1081/PDT-100000016.
  • Won, W. D., and H. Ross. 1966. Effect of diluent and relative humidity on apparent viability of airborne Pasteurella pestis. Appl. Microbiol. 14(5):742–745.
  • Woodcock, A. H., and M. M. Gifford. 1949. Sampling atmospheric sea-salt nuclei over the ocean, and efficiency of deposition of nuclei on 'ribbons' one millimeter wide. J. Meterol. 8(2):177–197.
  • Xie, X., Y. Li, H. Sun, and L. Liu. 2009. Exhaled droplets due to talking and coughing. J. R. Soc. Interface 6:S703–S14.
  • Yan, J., M. Grantham, J. Pantelic, P. J. Bueno de Mesquita, B. Albert, F. Liu, S. Ehrman, and D. K. Milton, and EMIT Consortium. 2018. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci USA 115(5):1081–1086.
  • Yang, W., and L. C. Marr. 2012. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl. Environ. Microbiol. 78(19):6781–6788. doi:10.1128/AEM.01658-12.
  • Yao, M., and G. Mainelis. 2006. Effect of physical and biological parameters on enumeration of bioaerosols by portable microbial impactors. J. Aerosol Sci. 37(11):1467–1483. doi:10.1016/j.jaerosci.2006.06.005.
  • Young, H. W., E. W. Larson, and J. W. Dominik. 1974. Modified spinning top homogeneous spray apparatus for use in experimental respiratory disease studies. Appl. Microbiol. 28(6):929–934.
  • Zhao, Y., A. J. A. Aarnink, P. Doornenbal, T. T. T. Huynh, P. W. G. Koerkamp, M. C. M. de Jong, and W. J. M. Landman. 2011. Investigation of the efficiencies of bioaerosol samplers for collecting aerosolized bacteria using a fluorescent tracer. I: Effects of non-sampling processes on bacterial culturability. Aerosol Sci. Technol. 45(3):423–431. doi:10.1080/02786826.2010.543196.
  • Zhen, H., T. Han, D. E. Fennell, and G. Mainelis. 2013. Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling. Appl. Environ. Microbiol. 79(24):7780–7789. doi:10.1128/AEM.02859-13.
  • Zhen, H., T. Han, D. E. Fennell, and G. Mainelis. 2014. A systematic comparison of four bioaerosol generators: Affect on culturability and cell membrane integrity when aerosolizing Escherichia coli bacteria. J. Aerosol Sci. 70:67–79. doi:10.1016/j.jaerosci.2014.01.002.
  • Zhou, Y., J. M. Benson, C. Irvin, H. Irshad, and Y.-S. Cheng. 2007. Particle size distribution and inhalation dose of shower water under selected operating conditions. Inhal. Toxicol. 19(4):333–342. doi:10.1080/08958370601144241.
  • Zuo, Z., T. H. Kuehn, A. Z. Bekele, S. K. Mor, H. Verma, S. M. Goyal, P. C. Raynor, and D. Y. H. Pui. 2014. Survival of airborne MS2 bacteriophage generated from human saliva, artificial saliva, and cell culture medium. Appl. Environ. Microbiol. 80(9):2796–2803. doi:10.1128/AEM.00056-14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.