6,381
Views
55
CrossRef citations to date
0
Altmetric
Review Articles

Field sampling of indoor bioaerosols

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 572-584 | Received 26 Jun 2019, Accepted 22 Oct 2019, Published online: 21 Nov 2019

References

  • Adhikari, A., J. S. Lewis, T. Reponen, E. C. DeGrasse, L. F. Grimsley, G. L. Chew, Y. Iossifova, and S. A. Grinshpun. 2010. Exposure matrices of endotoxin,(1→3)-β-D-glucan, fungi, and dust mite allergens in flood-affected homes of New Orleans. Science Total Environment 408 (22):5489–5498. doi:10.1016/j.scitotenv.2010.07.087.
  • ASTM. 2014. Standard practice for collection of total airborne fungal structures via inertial impaction methodology. ASTM d7788-14. 4, ASTM International, West Conshohocken, PA.
  • Azhar, E. I., A. Papadioti, F. Bibi, A. M. Ashshi, D. Raoult, and E. Angelakis. 2017. Pseudomonas saudimassiliensis’ sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia. New Microbes New Infections 16 :43–44. doi:10.1016/j.nmni.2016.12.021.
  • Bahram, M., S. Anslan, F. Hildebrand, P. Bork, and L. Tedersoo. 2018. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environmental Microbiology Reports 11 (4):487–494. doi:10.1111/1758-2229.12684.
  • BAuA. 2013. Technische Regel für Biologische Arbeitsstoffe 214 (Technical Rules for Biological Agents 214), Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (Federal Institute for Occupational Safety and Health). http://www.baua.de/de/Themenvon-A-Z/Biologische-Arbeitsstoffe/TRBA/TRBA-405.html.
  • Best, E., J. Sandoe, and M. Wilcox. 2012. Potential for aerosolization of Clostridium difficile after flushing toilets: The role of toilet lids in reducing environmental contamination risk. Journal Hospital Infection 80 (1):1–5. doi:10.1016/j.jhin.2011.08.010.
  • Blais Lecours, P., C. Duchaine, M. Taillefer, C. Tremblay, M. Veillette, Y. Cormier, and D. Marsolais. 2011. Immunogenic properties of archaeal species found in bioaerosols. PLoS One 6 (8):e23326. doi:10.1371/journal.pone.0023326.
  • Blais Lecours, P., M. Veillette, D. Marsolais, and C. Duchaine. 2012. Characterization of bioaerosols from dairy barns: Reconstructing the puzzle of occupational respiratory diseases by using molecular approaches. Applied and Environmental Microbiology 78 (9):3242–3248. doi:10.1128/AEM.07661-11.
  • Bonifait, L., R. Charlebois, A. Vimont, N. Turgeon, M. Veillette, Y. Longtin, J. Jean, and C. Duchaine. 2015. Detection and quantification of airborne norovirus during outbreaks in healthcare facilities. Clinical Infectious Diseases 61 (3):299–304. doi:10.1093/cid/civ321.
  • Bonifait, L., M. Veillette, V. Létourneau, D. Grenier, and C. Duchaine. 2014. Detection of Streptococcus suis in bioaerosols of swine confinement buildings. Applied and Environmental Microbiology 80 (11):3296–3304. doi:10.1128/AEM.04167-13.
  • Brown, J. K., and M. S. Hovmøller. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297 (5581):537–541. doi:10.1126/science.1072678.
  • Burge, H. A., D. L. Pierson, T. O. Groves, K. F. Strawn, and S. K. Mishra. 2000. Dynamics of airborne fungal populations in a large office building. Current Microbiology 40 (1):10–16. doi:10.1007/s002849910003.
  • Buttner, M. P., and L. D. Stetzenbach. 1993. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Applied and Environmental Microbiology 59 (1):219–226.
  • CEN. 2011. Ambient air quality - Measurement of bioaerosols - Part 1: Determination of moulds using filter sampling systems and culture-based analyses, in Cen/TS 16115-1. 2011, European Committee for Standardization, Brussels, Belgium.
  • Cherrie, J. W., L. Maccalman, W. Fransman, E. Tielemans, M. Tischer, and M. Van Tongeren. 2011. Revisiting the effect of room size and general ventilation on the relationship between near- and far-field air concentrations. Annals of Occupational Hygiene 55 :1006–1015. doi:10.1093/annhyg/mer092.
  • Coulon, F., and I. Colbeck. 2017. RAMBIE, rapid monitoring of bioaerosols in urban, agricultural and industrial environments, NERC. Impact 2017 (11):12–14. doi:10.21820/23987073.2017.11.12.
  • Cox, J., R. Indugula, S. Vesper, Z. Zhu, R. Jandarov, and T. Reponen. 2017. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR. Environmental Science: Processes Impacts 19 :1312–1319. doi:10.1039/C7EM00257B.
  • Crawford, C., T. Reponen, T. Lee, Y. Iossifova, L. Levin, A. Adhikari, and S. A. Grinshpun. 2009. Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1→ 3)-β-D-glucan. Aerobiologia 25 (3):147–158. doi:10.1007/s10453-009-9120-z.
  • DeLong, E. F., and N. R. Pace. 2001. Environmental diversity of bacteria and archaea. Systematic Biology 50 (4):470–478. doi:10.1080/106351501750435040.
  • Douglas, P., S. Robertson, R. Gay, A. L. Hansell, and T. W. Gant. 2018. A systematic review of the public health risks of bioaerosols from intensive farming. International Journal of Hygiene and Environmental Health 221(2):134–173. doi:10.1016/j.ijheh.2017.10.019.
  • Dybwad, M., G. Skogan, and J. M. Blatny. 2014. Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Science and Technology 48 (3):282–295. doi:10.1080/02786826.2013.871501.
  • Eduarda, W. 2009. Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology 39 :799–864.
  • Eduarda, W., and D. Heederik. 1998. Methods for quantitative assessment of airborne levels of noninfectious microorganisms in highly contaminated work environments. American Industrial Hygiene Association Journal 59 (2):113–127. doi:10.1080/15428119891010370.
  • Eduard, W., D. Heederik, C. Duchaine, and B. J. Green. 2012. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. Journal Environmental Monitoring 14 (2):334–339. doi:10.1039/c2em10717a.
  • Eduard, W., J. Lacey, K. Karlsson, U. Palmgren, G. Strom, and G. Blomquist. 1990. Evaluation of methods for enumerating microorganisms in filter samples from highly contaminated occupational environments. American Industrial Hygiene Association Journal 51 (8):427–436. doi:10.1202/0002-8894(1990)051<0427:EOMFEM>2.0.CO;2.
  • Eloe-Fadrosh, E. A., N. N. Ivanova, T. Woyke, and N. C. Kyrpides. 2016. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nature Microbiology 1 (4):15032. doi:10.1038/nmicrobiol.2015.32.
  • Emerson, J., P. Keady, N. Clements, E. Morgan, J. Awerbuch, S. Miller, and N. Fierer. 2017. High temporal variability in airborne bacterial diversity and abundance inside single‐family residences. Indoor Air 27 (3):576–586. doi:10.1111/ina.12347.
  • Eversole, J., M. Hart, C. Scotto, D. Mcpherson, Z. Minter, J. Tucker, J. Kesavan, and H.-B. Lin. 2019. Toward biological aerosol reference standards. Aerosol Science and Technology. In Review.
  • Frankel, M., M. Timm, E. Hansen, and A. Madsen. 2012. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 22 (5):405–414. doi:10.1111/j.1600-0668.2012.00770.x.
  • Friberg, B., S. Friberg, and L. G. Burman. 1999. Inconsistent correlation between aerobic bacterial surface and air counts in operating rooms with ultra clean laminar air flows: Proposal of a new bacteriological standard for surface contamination. Journal of Hospital Infection 42 (4):287–293. doi:10.1053/jhin.1998.0598.
  • Gregory, P. 1957. Electrostatic charges on spores of fungi in air. Nature 180 (4581):330. doi:10.1038/180330a0.
  • Haaland, D., and J. A. Siegel. 2017. Quantitative filter forensics for indoor particle sampling. Indoor Air 27 (2):364–376. doi:10.1111/ina.12319.
  • Haig, C. W., W. G. Mackay, J. T. Walker, and C. Williams. 2016. Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies. Journal of Hospital Infection 93 (3):242–255.
  • Haig, C., W. Mackay, J. Walker, and C. Williams. 2016. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. Journal of Hospital Infection 93 (3):242–255. doi:10.1016/j.jhin.2016.03.017.
  • Haugland, R. A., M. Varma, L. J. Wymer, and S. J. Vesper. 2004. Quantitative PCR analysis of selected aspergillus, penicillium and paecilomyces species. Systematic and Applied Microbiology 27 (2):198–210. doi:10.1078/072320204322881826.
  • Health Council of the Netherlands. 2010. Endotoxins—Health-Based Recommended Occupational Exposure Limit, No. 2010/04OSH, Health Council of the Netherlands, The Hague. https://www.healthcouncil.nl/documents/advisory-reports/2010/07/15/endotoxins-health-based-recommended-occupational-exposure-limit.
  • Hegarty, B., K. Dannemiller, and J. Peccia. 2018. Gene expression of indoor fungal communities under damp building conditions: implications for human health. Indoor Air 28(4):548–558. doi:10.1111/ina.12459.
  • Hospodsky, D., J. Qian, W. W. Nazaroff, N. Yamamoto, K. Bibby, H. Rismani-Yazdi, and J. Peccia. 2012. Human occupancy as a source of indoor airborne bacteria. PloS One 7 (4):e34867. doi:10.1371/journal.pone.0034867.
  • ISO. 2008. Indoor air — Part 16: Detection and enumeration of moulds — Sampling by filtration, in ISO 16000-16:2008(en).
  • ISO. 2018. Workplace exposure - Measurement of exposure by inhalation to chemical agents - Strategy for testing compliance with occupational exposure limit values, Standard: CSN EN 689, Brussels, Belgium.
  • Jensen, P. A., W. F. Todd, G. N. Davis, and P. V. Scarpino. 1992. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. American Industrial Hygiene Association Journal 53 (10):660–667. doi:10.1202/0002-8894(1992)053<0660:EOEBSC>2.0.CO;2.
  • Johnson, D., D. Thompson, R. Clinkenbeard, and J. Redus. 2008. Professional judgment and the interpretation of viable mold air sampling data. Journal Occupational Environmental Hygiene 5 (10):656–663. doi:10.1080/15459620802310796.
  • Jones, R. M., and L. M. Brosseau. 2015. Aerosol transmission of infectious disease. Journal of Occupational and Environmental Medicine 57 (5):501–508. doi:10.1097/JOM.0000000000000448.
  • Just, N., P. Blais Lecours, M. Marcoux-Voiselle, S. Kirychuk, M. Veillette, B. Singh, and C. Duchaine. 2013. Archaeal characterization of bioaerosols from cage-housed and floor-housed poultry operations. Canadian j. Microbiology 59 (1):46–50. doi:10.1139/cjm-2012-0305.
  • Just, N., S. Kirychuk, Y. Gilbert, V. Letourneau, M. Veillette, B. Singh, and C. Duchaine. 2011. Bacterial diversity characterization of bioaerosols from cage-housed and floor-housed poultry operations. Environmental Research 4 :492–498. doi:10.1016/j.envres.2011.01.009.
  • King, M. P., A. Joseph, G. Fearing, T. Ramos, Baig, B. Smith, and A. Koustova. 2019. Assays and enumeration of bioaerosols: Historical approaches to modern practices. Aerosol Science and Technology. In Review.
  • Kissell, F. N., and H. K. Sacks. 2002. Inaccuracy of area sampling for measuring the dust exposure of mining machine operators in coal mines. Mining Engineering 54 :33–39.
  • LeBouf, R., L. Yesse, and A. Rossner. 2008. Seasonal and diurnal variability in airborne mold from an indoor residential environment in Northern New York. Journal of the Air & Waste Management Association 58 (5):684–692. doi:10.3155/1047-3289.58.5.684.
  • Lehtonen, M., T. Reponen, and A. Nevalainen. 1993. Everyday activities and variation of fungal spore concentrations in indoor air. International Biodeterioration & Biodegradation 31: 25–39. doi:10.1016/0964-8305(93)90012-Q.
  • Lemieux, J., M. Veillette, H. Mbareche, and C. Duchaine. 2019. Re-aerosolization in liquid-based air samplers induces bias in bacterial diversity. Aerosol Science and Technology 53 :1244–1260.
  • Li, L.,. N. Mendis, H. Trigui, J. D. Oliver, and S. P. Faucher. 2014. The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology 5 :258. doi:10.3389/fmicb.2014.00258.
  • Lindsley, W. G. 2016. Filter pore size and aerosol sample collection. In NIOSH manual of analytical methods, eds. Ashley, K. and P. F. O'Connor, FB1–14. Cincinnati, OH: National Institute for Occupational Safety and Health.
  • Lindsley, W. G., F. M. Blachere, K. A. Davis, T. A. Pearce, M. A. Fisher, R. Khakoo, S. M. Davis, M. E. Rogers, R. E. Thewlis, J. A. Posada, et al. 2010. Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic. Clinical Infectious Diseases 50 (5):693–698.
  • Lindsley, W. G., B. J. Green, F. M. Blachere, S. B. Martin, B. F. Law, P. A. Jensen, and M. P. Schafer. 2017. Sampling and characterization of bioaerosols. In NIOSH manual of analytical methods, eds. Ashley, K. and P. F. O'Connor, BA1–115. Cincinnati, OH: National Institute for Occupational Safety and Health.
  • Lindsley, W. G., B. J. Green, F. M. Blachere, S. B. Martin, B. F. Law, P. A. Jensen, and M. P. Schafer. 2017. Sampling and characterization of bioaerosols. In NIOSH manual of analytical methods (NMAM), eds. Ashley, K. and P. F. O'Connor, BA1–115. Cincinnati, OH: National Institute for Occupational Safety and Health Cincinnati.
  • Luongo, J. C., K. P. Fennelly, J. A. Keen, Z. J. Zhai, B. W. Jones, and S. L. Miller. 2016. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air 26 (5):666–678. doi:10.1111/ina.12267.
  • Lurie-Weinberger, M. N., and U. Gophna. 2015. Archaea in and on the human body: Health implications and future directions. PLoS Pathogens 11 (6):e1004833. doi:10.1371/journal.ppat.1004833.
  • Macher, J. M., M. A. Chatigny, H. A. Burge, 1995. Sampling airborne microorganisms and aeroallergens. In Air sampling instruments for evaluations of atmospheric contaminants, eds. B. S. Cohen and S. V. Hering, 589–617. 8th ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, Inc.
  • Macher, J. 1999. Bioaerosols: Assessment and control. Cincinnati, OH: American Conference of Governmental Industrial Hygienists (ACGIH).
  • Macher, J. M., and M. W. First. 1984. Personal air samplers for measuring occupational exposures to biological hazards. American Industrial Hygiene Association Journal 45 (2):76–83. doi:10.1202/0002-8894(1984)045<0076:PASFMO>2.3.CO;2.
  • Mainelis, G. 2019. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Science and Technology 1–24. doi:10.1080/02786826.2019.1671950.
  • Mbareche, H., E. Brisebois, M. Veillette, and C. Duchaine. 2017. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain. Science of the Total Environment 599 :2095–2104. doi:10.1016/j.scitotenv.2017.05.076.
  • Mbareche, H., M. Veillette, G. J. Bilodeau, and C. Duchaine. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Applied and Environmental Microbiology 84 :e01589–01518.
  • Mbareche, H., M. Veillette, W. Teertstra, W. Kegel, G. J. Bilodeau, H. A. Wösten, and C. Duchaine. 2019. Fungal cells recovery from air samples: A tale of loss and gain. Applied and Environmental Microbiology: AEM 85 :e02941–02918
  • Meadow, J. F., A. E. Altrichter, S. W. Kembel, J. Kline, G. Mhuireach, M. Moriyama, D. Northcutt, T. K. O'Connor, A. M. Womack, G. Z. Brown, et al. 2014. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24 (1):41–48. doi:10.1111/ina.12047.
  • Mirskaya, E., and I. E. Agranovski. 2018. Sources and mechanisms of bioaerosol generation in occupational environments. Critical Reviews Microbiology 44 (6):739–758. doi:10.1080/1040841X.2018.1508125.
  • Morey, P. R. 2007. Microbiological sampling strategies in indoor environments. In Sampling and Analysis of Indoor Microorganisms, 51–74.
  • Mubareka, S., N. Groulx, E. Savory, T. Cutts, S. Theriault, J. A. Scott, C. J. Roy, N. Turgeon, E. Bryce, G. Astrakianakis, et al. 2019. Bioaerosols and transmission, a diverse and growing community of practice. Frontiers Public Health 7 :1–7. doi:10.3389/fpubh.2019.00023.
  • National Research Council. 2005. Chapter 3 Indoor and outdoor bioaerosol backgrounds and sampling strategies in Sensor systems for biological agent attacks: Protecting buildings and military bases, 1–45. The National Academies Press, Washington, DC.
  • Nazaroff, W. W. 2016. Indoor bioaerosol dynamics. Indoor Air 26 (1):61–78. doi:10.1111/ina.12174.
  • Nehmé, B., Y. Gilbert, V. Létourneau, R. J. Forster, M. Veillette, R. Villemur, and C. Duchaine. 2009. Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols. Applied and Environmental Microbiology 75: 5445–5450. doi:10.1128/AEM.00726-09.
  • Nieto-Caballero, M., N. Savage, P. Keady, and M. Hernandez. 2019. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. Journal Microbiological Methods 157: 1–3. doi:10.1016/j.mimet.2018.12.010.
  • Noss, I., G. Doekes, I. Sander, D. J. Heederik, P. S. Thorne, and I. M. Wouters. 2010. Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement. Annals of Occupational Hygiene 54 :651–658. doi:10.1093/annhyg/meq026.
  • Pan, M., A. Eiguren‐Fernandez, H. Hsieh, N. Afshar‐Mohajer, S. Hering, J. Lednicky, Z. Hugh Fan, and C. Y. Wu. 2016. Efficient collection of viable virus aerosol through laminar‐flow, water‐based condensational particle growth. Journal of Applied Microbiology 120 (3):805–815. doi:10.1111/jam.13051.
  • Pearson, C., E. Littlewood, P. Douglas, S. Robertson, T. W. Gant, and A. L. Hansell. 2015. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. Journal of Toxicology Environmental Health, Part B 18 (1):43–69. doi:10.1080/10937404.2015.1009961.
  • Prussin, A. J., and L. C. Marr. 2015. Sources of airborne microorganisms in the built environment. Microbiome 3 (1):78. doi:10.1186/s40168-015-0144-z.
  • Rao, C. Y., H. A. Burge, and J. C. Chang. 1996. Review of quantitative standards and guidelines for fungi in indoor air. Journal of the Air & Waste Management Association 46 :899–908. doi:10.1080/10473289.1996.10467526.
  • Reponen, T., S. Vesper, L. Levin, E. Johansson, P. Ryan, J. Burkle, S. A. Grinshpun, S. Zheng, D. I. Bernstein, J. Lockey, et al. 2011. High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Annals of Allergy, Asthma & Immunology 107 (2):120–126. doi:10.1016/j.anai.2011.04.018.
  • Sánchez-Parra, B., A. Núñez, and D. A. Moreno. 2019. Preventing legionellosis outbreaks by a quick detection of airborne Legionella pneumophila. Environmental Research 171 :546–549. doi:10.1016/j.envres.2019.01.032.
  • Sattar, S. A. 2016. Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome. American Journal of Infection Control 44 (9):S95–S101. doi:10.1016/j.ajic.2016.06.010.
  • Scheff, P. A., V. K. Paulius, L. Curtis, and L. M. Conroy. 2000. Indoor air quality in a Middle school, part II: Development of emission factors for particulate matter and bioaerosols. Applied Occupational and Environmental Hygiene 15 (11):835–842. doi:10.1080/10473220050175715.
  • Smith, J., C. E. Adams, M. F. King, C. J. Noakes, C. Robertson, and S. J. Dancer. 2018. Is there an association between airborne and surface microbes in the critical care environment? Journal of Hospital Infection 100 (3):e123–e129. doi:10.1016/j.jhin.2018.04.003.
  • Springston, J. P., and L. Yocavitch. 2017. Existence and control of legionella bacteria in building water systems: A review. Journal of Occupational Environmental Hygiene 14 (2):124–134. doi:10.1080/15459624.2016.1229481.
  • Stockwell, R. E., E. L. Ballard, P. O'Rourke, L. D. Knibbs, L. Morawska, and S. C. Bell. 2019. Indoor hospital air and the impact of ventilation on bioaerosols: A systematic review. Journal of Hospital Infection 103 (2):175–184. doi:10.1016/j.jhin.2019.06.016.
  • Toivola, M., S. Alm, T. Reponen, S. Kolari, and A. Nevalainen. 2002. Personal exposures and microenvironmental concentrations of particles and bioaerosols. Journal of Environmental Monitoring 4 (1):166–174. doi:10.1039/b108682k.
  • Turgeon, N., M. J. Toulouse, B. Martel, S. Moineau, and C. Duchaine. 2014. Comparison of five bacteriophages as models for viral aerosol studies. Applied and Environmental Microbiology 80 (14):4242–4250. doi:10.1128/AEM.00767-14.
  • Verreault, D., L. Gendron, G. M. Rousseau, M. Veillette, D. Masse, W. G. Lindsley, S. Moineau, and C. Duchaine. 2011. Detection of airborne lactococcal bacteriophages in cheese manufacturing plants. Applied and Environmental Microbiology 77 (2):491–497. doi:10.1128/AEM.01391-10.
  • Verreault, D., M. Marcoux-Voiselle, N. Turgeon, S. Moineau, and C. Duchaine. 2015. Resistance of aerosolized bacterial viruses to relative humidity and temperature. Applied and Environmental Microbiology 81 (20):7305–7311. doi:10.1128/AEM.02484-15.
  • Verreault, D., S. Moineau, and C. Duchaine. 2008. Methods for sampling of airborne viruses. Microbiology and Molecular Biology Reviews 72 (3):413–444. doi:10.1128/MMBR.00002-08.
  • Vesper, S., C. McKinstry, R. Haugland, L. Wymer, K. Bradham, P. Ashley, D. Cox, G. Dewalt, and W. Friedman. 2007. Development of an environmental relative moldiness index for US homes. Journal of Occupational and Environmental Medicine 49 (8):829–833. doi:10.1097/JOM.0b013e3181255e98.
  • Walser, S. M., D. G. Gerstner, B. Brenner, J. Bünger, T. Eikmann, B. Janssen, S. Kolb, A. Kolk, D. Nowak, M. Raulf, et al. 2015. Evaluation of exposure–response relationships for health effects of microbial bioaerosols–a systematic review. International Journal of Hygiene and Environmental Health 218 (7):577–589. doi:10.1016/j.ijheh.2015.07.004.
  • Wathes, C. 1995. Bioaerosols in animal houses. In Bioaerosols handbook, eds. C. S. Cox and C. Wathes, 547–577. Boca Raton, FL, USA: Lewis Publishers.
  • Wösten, H. A., M.-A. van Wetter, L. G. Lugones, H. C. van der Mei, H. J. Busscher, and J. G. Wessels. 1999. How a fungus escapes the water to grow into the air. Current Biology 9 (2):85–88. doi:10.1016/S0960-9822(99)80019-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.