2,048
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Precision characterization of three ultrafine condensation particle counters using singly charged salt clusters in the 1–4 nm size range generated by a bipolar electrospray source

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 396-409 | Received 26 Sep 2019, Accepted 11 Dec 2019, Published online: 08 Jan 2020

References

  • Almeida, J., S. Schobesberger, A. Kürten, I. K. Ortega, O. Kupiainen-Määttä, A. P. Praplan, A. Adamov, A. Amorim, F. Bianchi, M. Breitenlechner, et al. 2013. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 502 (7471):359–63. doi:10.1038/nature12663.
  • Attoui, M., M. Paragano, J. Cuevas, and J. Fernández de la Mora. 2013. Tandem DMA generation of strictly monomobile 1–3.5 nm particle standards particle standards. Aerosol Science and Technology 47 (5):499–511. doi:10.1080/02786826.2013.764966.
  • Barmpounis, K., A. Ranjithkumar, A. Schmidt-Ott, M. Attoui, and G. Biskos. 2018. Enhancing the detection efficiency of condensation particle counters for sub-2 nm particles. Journal of Aerosol Science117:44–53. doi:10.1016/j.jaerosci.2017.12.005.
  • Cai, R., M. Attoui, J. Jiang, F. Korhonen, J. Hao, T. Petäjä, and J. Kangasluoma. 2018. Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates. Aerosol Science and Technology 52 (11):1332–43. doi:10.1080/02786826.2018.1520964.
  • Fernández de la Mora, J. 2018. Mobility analysis of proteins by charge reduction in a bipolar electrospray source. Analytical Chemistry90 (20):12187–90.
  • Fernández de la Mora, J., and C. Barrios-Collado. 2017. A bipolar electrospray source of singly charged salt clusters of precisely controlled composition. Aerosol Science and Technology 51 (6):778–86. doi:10.1080/02786826.2017.1302070.
  • Fernández de la Mora, J., B. A. Thomson, and M. Gamero-Castaño. 2005. Tandem mobility mass spectrometry study of electrosprayed tetraheptyl ammonium bromide clusters. Journal of the American Society for Mass Spectrometry 16 (5):717–32. doi:10.1016/j.jasms.2005.01.019.
  • Flagan, R.C. 1999. On differential mobility analyzer resolution. Aerosol Science and Technology 30 (6):556–70. doi:10.1080/027868299304417.
  • Fuchs, N.A. 1963. On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofisica Pura e Applicata 56 (1):185–93. ISSN 0367-4355, doi:10.1007/BF01993343.
  • Gerlich, D. 2004. Applications of RF fields and collision dynamics in atomic mass spectrometry. Journal of Analytical Atomic Spectrometry 19 (5):581–90. doi:10.1039/b404032p.
  • Heinritzi, M., M. Simon, G. Steiner, A. C. Wagner, A. Kürten, A. Hansel, and J. Curtius. 2016. Characterization of the mass-dependent transmission efficiency of a CIMS. Atmospheric Measurement Techniques9 (4):1449–60. doi:10.5194/amt-9-1449-2016.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, A. Eiguren-Fernandez, N. M. Kreisberg, C. Kuang, and M. Attoui. 2017. Detection near 1 nm with a laminar- flow, water-based condensation particle counter. Aerosol Science and Technology 51 (3):354–62. doi:10.1080/02786826.2016.1262531.
  • Hermann, M., B. Wehner, O. Bischof, H. S. Han, T. Krinke, W. Liu, A. Zerrath, and A. Wiedensohler. 2007. Particle counting efficiencies of new TSI condensation particle counters. Journal of Aerosol Science38 (6):674–82. doi:10.1016/j.jaerosci.2007.05.001.
  • Hogan, C. J., and J. Fernández de la Mora. 2009. Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops. Physical Chemistry Chemical Physics. 11 (36):8079–90. doi:10.1039/b904022f.
  • Iida, K., M. R. Stolzenburg, and P. H. McMurry. 2009. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Science and Technology 43 (1):81–96. doi:10.1080/02786820802488194.
  • Jiang, J., M. Chen, C. Kuang, M. Attoui, and P. H. McMurry. 2011. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Journal of Aerosol Science 45 (4):510–251. doi:10.1080/02786826.2010.547538.
  • Junninen, H., M. Ehn, T. Petäjä, L. Luosujärvi, T. Kotiaho, R. Kostiainen, U. Rohner, M. Gonin, K. Fuhrer, M. Kulmala, et al. 2010. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques 3 (4):1039–53. doi:10.5194/amt-3-1039-2010.
  • Kangasluoma, J., H. Junninen, K. Lehtipalo, J. Mikkilä, J. Vanhanen, M. Attoui, M. Sipilä, D. R. Worsnop, M. Kulmala, and T. Petäjä. 2013. Remarks on ion generation for CPC detection efficiency studies in sub-3-nm size range. Aerosol Science and Technology 47 (5):556–63. doi:10.1080/02786826.2013.773393.
  • Kangasluoma, J., and J. Kontkanen. 2017. On the sources of uncertainty in the sub-3 nm particle concentration measurement. Journal of Aerosol Science112:34–51.
  • Kangasluoma, J., A. Samodurov, M. Attoui, A. Franchin, H. Junninen, F. Korhonen, T. Kurtén, H. Vehkamäki, M. Sipilä, K. Lehtipalo, et al. 2016. Heterogeneous nucleation onto ions and neutralized ions: Insights into sign-preference. The Journal of Physical Chemistry C120 (13):7444–50. doi:10.1021/acs.jpcc.6b01779.
  • Leiminger, M., S. Feil, P. Mutschlechner, A. Ylisirniö, D. Gunsch, L. Fischer, A. Jordan, S. Schobesberger, A. Hansel, and G. Steiner. 2019. Characterisation of the transfer of cluster ions through an atmospheric pressure interface time-of-flight mass spectrometer with hexapole ion guides. Atmospheric Measurement Techniques 12 (10):5231–46. doi:10.5194/amt-12-5231-2019.
  • Mäkelä, J. M., M. Riihelä, A. Ukkonen, V. Jokinen, and J. Keskinen. 1996. Comparison of mobility equivalent diameter with Kelvin-Thomson diameter using ion mobility data. The Journal of Chemical Physics105 (4):1562–71. doi:10.1063/1.472017.
  • Petäjä, T., G. Mordas, H. Manninen, P. P. Aalto, K. Hämeri, and M. Kulmala. 2006. Detection efficiency of a water-based TSI condensation particle counter 3785. Aerosol Science and Technology 40 (12):1090–7. doi:10.1080/02786820600979139.
  • Rus, J., D. Moro, J. A. Sillero, J. Royuela, A. Casado, F. Estevez-Molinero, and J. Fernández de la Mora. 2010. IMS-MS studies based on coupling a differential mobility analyzer (DMA) to commercial API-MS systems. International Journal of Mass Spectrometry298 (1-3):30–40. doi:10.1016/j.ijms.2010.05.008.
  • Scheibel, H. G., and J. Porstendörfer. 1983. Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm. Journal of Aerosol Science14 (2):113–26. doi:10.1016/0021-8502(83)90035-6.
  • Sgro, L. A., and J. Fernández de la Mora. 2004. A Simple turbulent mixing CNC for charged particle detection down to 1.2 nm. Aerosol Science and Technology 38 (1):1–11. doi:10.1080/02786820300982.
  • Steiner, G., M. Attoui, D. Wimmer, and G. P. Reischl. 2010. A medium flow, high-resolution Vienna DMA running in recirculating mode. Aerosol Science and Technology 44 (4):308–15. doi:10.1080/02786821003636763.
  • Steiner, G., A. Franchin, J. Kangasluoma, V. M. Kerminen, M. Kulmala, and T. Petäjä. 2017. Production of neutral molecular clusters by controlled neutralization of mobility standards. Aerosol Science and Technology 51 (8):946–55. doi:10.1080/02786826.2017.1328103.
  • Stolzenburg, M. R., and P. H. McMurry. 1991. An ultrafine aerosol condensation nucleus counter. Aerosol Science and Technology 14 (1):48–65. doi:10.1080/02786829108959470.
  • Tauber, C., S. Brilke, P. J. Wlasits, P. S. Bauer, G. Köberl, G. Steiner, and P. M. Winkler. 2019. Humidity effects on the detection of soluble and insoluble nanoparticles in butanol operated condensation particle counters. Atmospheric Measurement Techniques 12 (7):3659–71. doi:10.5194/amt-12-3659-2019.
  • Tauber, C., X. Chen, P. E. Wagner, P. M. Winkler, C. J. Hogan, and A. Maißer. 2018. Heterogeneous nucleation onto monoatomic ions: Support for the Kelvin-Thomson theory. ChemPhysChem 19 (22):3144–9. doi:10.1002/cphc.201800698.
  • Tauber, C., G. Steiner, and P. M. Winkler. 2019. Counting efficiency determination from quantitative intercomparison between expansion and laminar flow type condensation particle counter. Aerosol Science and Technology 53 (3):344–54. doi:10.1080/02786826.2019.1568382.
  • Ude, S., and J. Fernández de la Mora. 2005. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. Journal of Aerosol Science36 (10):1224–37. doi:10.1016/j.jaerosci.2005.02.009.
  • Vanhanen, J., J. Mikkilä, K. Lehtipalo, M. Sipilä, H. E. Manninen, E. Siivola, T. Petäjä, and M. Kulmala. 2011. Particle size magnifier for nano-CN detection. Aerosol Science and Technology 45 (4):533–42. doi:10.1080/02786826.2010.547889.
  • Wimmer, D., K. Lehtipalo, A. Franchin, J. Kangasluoma, F. Kreissl, A. Kürten, A. Kupc, A. Metzger, J. Mikkilä, T. Petäjä, et al. 2013. Performance of diethylene glycol-based particle counters in the sub-3nm size range. Atmospheric Measurement Techniques 6 (7):1793–804. doi:10.5194/amt-6-1793-2013.
  • Winkler, P. M., G. Steiner, A. Vrtala, H. Vehkamäki, M. Noppel, K. E. J. Lehtinen, G. P. Reischl, P. E. Wagner, and M. Kulmala. 2008. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319 (5868):1374–7. doi:10.1126/science.1149034.
  • Winklmayr, W., G. P. Reischl, A. O. Lindner, and A. Berner. 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. Journal of Aerosol Science 22 (3):289–96. doi:10.1016/S0021-8502(05)80007-2.