1,903
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Pollen clustering strategies using a newly developed single-particle fluorescence spectrometer

ORCID Icon & ORCID Icon
Pages 426-445 | Received 15 Aug 2019, Accepted 18 Dec 2019, Published online: 23 Jan 2020

References

  • Allen, G. P., R. M. Hodgson, S. R. Marsland, and J. R. Flenley. 2008. Machine vision for automated optical recognition and classification of pollen grains or other singulated microscopic objects. 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP’08, New York, 221–226. doi: 10.1109/MMVIP.2008.4749537.
  • American Academy of Allergy Asthma & Immunology. 2019. National Allergy Bureau Pollen Counts. Accessed August 1, 2019. https://www.aaaai.org/global/nab-pollen-counts?ipb=1.
  • Blaiss, M. 2010. Allergic rhinitis: Direct and indirect costs. Allergy and Asthma Proceedings, OceanSide Publications.31.3329 doi: 10.2500/aap.2010.
  • Bragg, L. H. 1969. Pollen size variation in selected grass taxa. Ecology 50 (1):124–7. doi: 10.2307/1934670.
  • Breiman, L. 2001. Random forests. Mach. Learn. 45 (1):5–32. doi: 10.1023/A:1010933404324.
  • Buckland, M., and F. Gey. 1994. The relationship between Recall and Precision. J. Am. Soc. Inf. Sci. 45 (1):12–9. doi: 10.1002/(SICI)1097-4571(199401)45:1 < 12::AID-ASI2 > 3.0.CO;2-L.
  • Bureau, A., J. Dupuis, B. Hayward, K. Falls, and P. Van Eerdewegh. 2003. Mapping complex traits using random forests. BMC Genet. 4 (Suppl 1):S64. doi: 10.1186/1471-2156-4-S1-S64.
  • Buters, J., C. Antunes, A. Galveias, K. Bergmann, M. Thibaudon, C. Galán, C. Schmidt-Weber, and J. Oteros. 2018. Pollen and spore monitoring in the world. Clin. Transl. Allergy 8 (1):9.doi: 10.1186/s13601-018-0197-8.
  • Calvo, A., D. Baumgardner, A. Castro, D. Fernández-González, A. Vega-Maray, R. Valencia-Barrera, F. Oduber, C. Blanco-Alegre, and R. Faile. 2018. Daily behavior of urban Fluorescing Aerosol Particles in northwest Spain. Atmos. Environ. 184: 262–77. doi: 10.1016/j.atmosenv.2018.04.027.
  • Chen, C., E. A. Hendriks, R. P. W. Duin, J. H. C. Reiber, P. S. Hiemstra, L. A. De Weger, and B. C. Stoel. 2006. Feasibility study on automated recognition of allergenic pollen: Grass, birch and mugwort. Aerobiologia (Bologna) 22 (4):275–84. doi: 10.1007/s10453-006-9040-0.
  • Conner, J. K., M. Proctor, P. Yeo, and A. Lack. 1997. The natural history of pollination. Ecology 78 (1):327–239. doi: 10.2307/2266004.
  • Crawford, I., S. Ruske, D. Topping, and M. Gallagher. 2015. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol. Atmos. Meas. Tech. 8 (11):4979–91. doi: 10.5194/amt-8-4979-2015.
  • Crouzy, B., M. Stella, T. Konzelmann, B. Calpini, and B. Clot. 2016. All-optical automatic pollen identification: Towards an operational system. Atmos. Environ. 140:202–12. doi: 10.1016/j.atmosenv.2016.05.062.
  • Dell’Anna, R. (2010). A critical presentation of innovative techniques for automated pollen identification in aerobiological monitoring networks. In Pollen: Structure, types, and effects, ed. B. J. Kaiser, 273–88. Hauppauge, NY: Nova Science Publishers.
  • Després, V., Huffman, J. A., Burrows, S., Hoose, C., Safatov, A., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl, U., and Jaenicke, R. (2012). Primary biological aerosol particles in the atmosphere: a review. Chem. Phys. Meteorol. 64 (1):15598. doi: 10.3402/tellusb.v64i0.15598.
  • Dietterich, T. 1995. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 27 (3):326–7. doi: 10.1145/212094.212114.
  • Elangasinghe, M. A., N. Singhal, K. N. Dirks, J. A. Salmond, and S. Samarasinghe. 2014. Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmos. Environ. 94:106–116. doi: 10.1016/j.atmosenv.2014.04.051.
  • Erdmann, N., A. Dell'Acqua, P. Cavalli, C. Grüning, N. Omenetto, J. P. Putaud, F. Raes, and R. V. Dingenen. 2005. Instrument characterization and first application of the single particle analysis and sizing system (SPASS) for atmospheric aerosols. Aerosol Sci. Technol. 39 (5):377–93. doi: 10.1080/027868290935696.
  • Erdtman, G. 1952. Pollen morphology and plant taxonomy, GFF. Abingdon: Brill Archive.
  • Fennelly, M. J., G. Sewell, M. B. Prentice, D. J. O’Connor, and J. R. Sodeau. 2017. Review: The use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmosphere (Basel) 9 (1):1. doi: 10.3390/atmos9010001.
  • Forde, E., M. Gallagher, V. Foot, R. Sarda-Esteve, I. Crawford, P. Kaye, W. Stanley, and D. Topping. 2019. Characterisation and source identification of biofluorescent aerosol emissions over winter and summer periods in the United Kingdom. Atmos. Chem. Phys. 19 (3):1665–84. doi: 10.5194/acp-19-1665-2019.
  • Frenz, D. A. 1999. Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann. Allergy, Asthma Immunol. 83 (5):341–9. doi: 10.1016/S1081-1206(10)62828-1.
  • Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29 (5):1189–232. doi: 10.1214/aos/1013203451.
  • Gabey, A. M., M. W. Gallagher, J. Whitehead, J. R. Dorsey, P. H. Kaye, and W. R. Stanley. 2010. Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos. Chem. Phys. 10 (10):4453–66. doi: 10.5194/acp-10-4453-2010.
  • Galán, C., H. García-Mozo, P. Cariñanos, P. Alcázar, and E. Domínguez-Vilches. 2001. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int. J. Biometeorol. 45 (1):8–12. doi: 10.1007/s004840000081.
  • Geburek, T., K. Hiess, R. Litschauer, and N. Milasowszky. 2012. Temporal pollen pattern in temperate trees: Expedience or fate? Oikos 121 (10):1603–12. doi: 10.1111/j.1600-0706.2011.20140.x.
  • Han, H., X. Guo, and H. Yu. 2017. Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, IESS, Beijing, 219–224. doi: 10.1109/ICSESS.2016.7883053.
  • Hartigan, J. A., and M. A. Wong. 2006. Algorithm AS 136: A K-means clustering algorithm. Appl. Stat. 28 (1):100–8. doi: 10.2307/2346830.
  • Healy, D. A., J. A. Huffman, D. J. O'Connor, C. Pöhlker, U. Pöschl, J. R. Sodeau. 2014. Ambient measurements of biological aerosol particles near Killarney, Ireland: A comparison between real-time fluorescence and microscopy techniques. Atmos. Chem. Phys. 14:8055–8069. doi: 10.5194/acp-14-8055-2014.
  • Healy, D. A., D. J. O'Connor, A. M. Burke, and J. R. Sodeau. 2012. A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material. Atmos. Environ. 60:534. doi: 10.1016/j.atmosenv.2012.06.052.
  • Hernandez, M., Perring, A., McCabe, K., Kok, G., Granger, G., and Baumgardner, D. (2016). Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. Atmos. Meas. Tech. 9(7):3283. doi: 10.5194/amt-9-3283-2016.
  • Hill, S. C., M. W. Mayo, and R. K. Chang. 2009. Fluorescence of bacteria, pollens, and naturally occurring airborne particles: Excitation/emission spectra. Army Res. Lab. Appl. Phys. (No. ARL-TR-4722): 62.
  • Hill, S. C., R. G. Pinnick, S. Niles, N. F. Fell, Y.-L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang. 2001. Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity: erratum. Appl. Opt. 40 (18):3005–3013. doi: 10.1364/AO.40.003005.
  • Hill, S., R. Pinnick, S. Niles, and Y. Pan. 1999. Real‐time measurement of fluorescence spectra from single airborne biological particles. F. Anal. 3:221–239. doi: 10.1002/(SICI)1520-6521(1999)3:4/5 < 221::AID-FACT2 > 3.0.CO;2-7.
  • Hothorn, T., B. Lausen, A. Benner, and M. Radespiel-Tröger. 2004. Bagging survival trees. Stat. Med. 23 (1):77–91. doi: 10.1002/sim.1593.
  • Hothorn, T., A. Zeileis, E. Cheng, and S. Ong. 2015. partykit: A modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16 (1):3905–3909.
  • Huang, H. C., Y.-L. Pan, S. C. Hill, and R. G. Pinnick. 2011. Fluorescence-based classification with selective collection and identification of individual airborne bioaerosol particles. In Optical Processes in Microparticles and Nanostructures: A Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University, , ed. A. Serpengüzel and A. W. Poon, 153–67. Singapore: World Scientific. doi: 10.1142/9789814295789_0009.
  • Huffman, J., A. Perring, N. Savage, B. Clot, B. Crouzy, F. Tummon, O. Shoshanim, B. Damit, J. Schneider, V. Sivaprakasam, et al. 2019. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 1–56. doi: 10.1080/02786826.2019.1664724.
  • Huffman, D., B. Swanson, and J. A. Huffman. 2016. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate. Atmos. Meas. Tech. 9 (8):3987–3998. 2016. doi: 10.5194/amt-9-3987-2016.
  • Huffman, D. R., and Huffman. J. A. 2019. A wavelength dispersive microscope spectrofluorometer for characterizing multiple particles simultaneously. University of Denver. US Patent US20160320306A1. filed January 8, 2014, and issued December 13, 2018
  • James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An introduction to statistical learning. New York: springer. doi: 10.1007/978-1-4614-7138-7.
  • Jones, M. D., and L. C. Newell. 1948. Size, variability, and identification of grass pollen. J. Am. Soc. Agron. 40:136–143. doi: 10.2134/agronj1948.00021962004000020004x.
  • Kawashima, S., B. Clot, T. Fujita, Y. Takahashi, and K. Nakamura. 2007. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmos. Environ. 41 (36):7987–7993. doi: 10.1016/j.atmosenv.2007.09.019.
  • Kawashima, S., M. Thibaudon, S. Matsuda, T. Fujita, N. Lemonis, B. Clot, and G. Oliver. 2017. Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia (Bologna) 33 (3):351–362. doi: 10.1007/s10453-017-9474-6.
  • Kaye, P., W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington. 2005. Single particle multichannel bio-aerosol fluorescence sensor. Opt. Express 13 (10):3583–3593. doi: 10.1364/OPEX.13.003583.
  • Kiselev, D., L. Bonacina, and J. P. Wolf. 2011. Individual bioaerosol particle discrimination by multi-photon excited fluorescence. Opt. Express 19 (24):24516–24521. doi: 10.1364/OE.19.024516.
  • Kiselev, D., L. Bonacina, and J. P. Wolf. 2013. A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev. Sci. Instrum. 84 (3):033302. doi: 10.1063/1.4793792.
  • Knobelspiesse, K. D., C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch. 2004. Maritime aerosol optical thickness measured by handheld sun photometers. Remote Sens. Environ. 93:87–106. doi: 10.1016/j.rse.2004.06.018.
  • Könemann, T., F. Ditas, D. Walter, J. Brooks, E. Rodriguez-Caballero, M. Charlotte, M. D. Dewald, F. Drewnick, A. Edtbauer, F. Fachinger, et al. 2019. Online analysis of single aerosol particle fluorescence spectra during the AQABA research cruise around the Arabian Peninsula. Atmos. Chem. Phys. In Preparation.
  • Lee, M., O. Yaglidere, and A. Ozcan. 2011. Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express 2 (9):2721–2730. doi: 10.1364/BOE.2.002721.
  • Liu, Y., Z. Li, H. Xiong, X. Gao, and J. Wu. 2010. Understanding of internal clustering validation measures. Proceedings - IEEE International Conference on Data Mining, ICDM, Sydney, Australia, 911–16. doi: 10.1109/ICDM.2010.35.
  • Madonna, A. J., K. J. Voorhees, and T. L. Hadfield. 2001. Rapid detection of taxonomically important fatty acid methyl ester and steroid biomarkers using in situ thermal hydrolysis/methylation mass spectrometry (THM-MS): implications for bioaerosol detection. J. Anal. Appl. Pyrolysis 61 (1-2):65–89. doi: 10.1016/S0165-2370(01)00136-X.
  • Miki, K., S. Kawashima, B. Clot, and K. Nakamura. 2019. Comparative efficiency of airborne pollen concentration evaluation in two pollen sampler designs related to impaction and changes in internal wind speed. Atmos. Environ. 203:18–27. doi: 10.1016/j.atmosenv.2019.01.039.
  • Mitsumoto, K., K. Yabusaki, K. Kobayashi, and H. Aoyagi. 2010. Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence. Aerobiologia (Bologna) 26 (2):99–111. doi: 10.1007/s10453-009-9147-1.
  • Mohri, M., A. Rostamizadeh, and A. Talwalkar. 2018. Foundations of machine learning.. Cambridge, MA: MIT press.
  • O’Connor, D., D. Healy, S. Hellebust, J. Buters, and J. Sodeau. 2014. Using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique for the on-line detection of pollen grains. Aerosol Sci. Technol. 48 (4):341–349. doi: 10.1080/02786826.2013.872768.
  • Oteros, J., G. Pusch, I. Weichenmeier, U. Heimann, R. Möller, S. Röseler, C. Traidl-Hoffmann, C. Schmidt-Weber, and J. Buters. 2015. Automatic and online pollen monitoring. Int. Arch. Allergy Immunol. 167 (3):158–166. doi: 10.1159/000436968.
  • Pan, Y. L., J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang. 2003. Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci. Technol. 37 (8):628–639. doi: 10.1080/02786820300904.
  • Pan, Y. L., S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang. 2011. Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos. Environ. 45 (8):1555–1563. doi: 10.1016/j.atmosenv.2010.12.042.
  • Pan, Y. L., H. Huang, and R. K. Chang. 2012. Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263- and 351-nm laser at New Haven, CT, and Adelphi, MD. J. Quant. Spectrosc. Radiat. Transf. 113 (17):2213–2221. doi: 10.1016/j.jqsrt.2012.07.028.
  • Pauling, A., Contributors to the European Aeroallergen Network (EAN), Rotach, M. Gehrig, R. Clot, B. Jäger, S. Cerny, M. Schmidt, R. Bortenschlager, S. Brosch, et al. 2012. A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. Int. J. Biometeorol. 56 (5):949–958. doi: 10.1007/s00484-011-0505-7.
  • Percy, D. F., and B. S. Everitt. 2006. Cluster analysis. 3rd ed. J. Oper. Res. Soc. 34:845–846. doi: 10.2307/2584293.
  • Perring, A., J. Schwarz, D. Baumgardner, M. Hernandez, D. Spracklen, C. Heald, R. Gao, G. Kok, G. McMeeking, J. McQuaid, et al. 2015. Airborne observations of regional variation in fluorescent aerosol across the United States. J. Geophys. Res. Atmos. 120 (3):1153–1170. doi: 10.1002/2014JD022495.
  • Pinnick, R. G., S. C. Hill, Y. L. Pan, and R. K. Chang. 2004. Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon. Atmos. Environ. 38 (11):1657–1672. doi: 10.1016/j.atmosenv.2003.11.017.
  • Pöhlker, C., J. A. Huffman, J.-D. Förster, and U. Pöschl. 2013. Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen. Atmos. Meas. Tech. 6 (12):3369–3392. doi: 10.5194/amt-6-3369-2013.
  • Pöhlker, C., J. A. Huffman, and U. Pöschl. 2012. Autofluorescence of atmospheric bioaerosols - Fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5 (1):37–71. doi: 10.5194/amt-5-37-2012.
  • Ranzato, M., P. E. Taylor, J. M. House, R. C. Flagan, Y. LeCun, and P. Perona. 2007. Automatic recognition of biological particles in microscopic images. Pattern Recognit. Lett. 28 (1):31–39. doi: 10.1016/j.patrec.2006.06.010.
  • Rebotier, T. P., and K. A. Prather. 2007. Aerosol time-of-flight mass spectrometry data analysis: A benchmark of clustering algorithms. Anal. Chim. Acta doi: 10.1016/j.aca.2006.12.009.
  • Richter, R., U. Berger, S. Dullinger, F. Essl, M. Leitner, M. Smith, and G. Vogl. 2013. Spread of invasive ragweed: Climate change, management and how to reduce allergy costs. J. Appl. Ecol. 50 (6):1422–1430. doi: 10.1111/1365-2664.12156.
  • Robinson, N., J. Allan, J. Huffman, P. Kaye, V. Foot, and M. Gallagher. 2013. Cluster analysis of WIBS single-particle bioaerosol data. Atmos. Meas. Tech. 6 (2):337–347. doi: 10.5194/amt-6-337-2013.
  • Rokach, L. 2010. Ensemble-based classifiers. Artif. Intell. Rev. 33 (1-2):1–39. doi: 10.1007/s10462-009-9124-7.
  • Ruske, S., D. Topping, V. Foot, P. Kaye, W. Stanley, I. Crawford, A. Morse, and M. Gallagher. 2017. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer. Atmos. Meas. Tech. 10 (2):695–708. doi: 10.5194/amt-10-695-2017.
  • Ruske, S., D. O. Topping, V. E. Foot, A. P. Morse, and M. W. Gallagher. 2018. Machine learning for improved data analysis of biological aerosol using the WIBS. Atmos. Meas. Tech. 11 (11):6203–6230. doi: 10.5194/amt-11-6203-2018.
  • Šantl-Temkiv, T., F. Carotenuto, B. Sikoparija, T. Maki, P. Amato, M. Yao, P. DeMott, T. Hill, C. Morrism, C. Pöhlker, et al. 2019. Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Aerosol Sci. Technol. 1–27. doi: 10.1080/02786826.2019.1676395.
  • Satterwhite, M. B. 1990. Spectral luminescence of plant pollen. 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, 1945–48. doi: 10.1109/igarss.1990.688906.
  • Šaulienė, I., L. Šukienė, G. Daunys, G. Valiulis, L. Vaitkevičius, P. Matavulj, S. Brdar, M. Panic, B. Sikoparija, B. Clot, et al. 2019. Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps. Atmos. Meas. Tech. Discuss 2:1–33. doi: 10.5194/amt-2018-432.
  • Sauvageat, E., Y. Zeder, K. Auderset, B. Calpini, B. Clot, B. Crouzy, T. Konzelmann, G. Lieberherr, F. Tummon, and K. Vasilatou. 2019. Real-time pollen monitoring using digital holography. Preprint. doi: 10.5194/amt-2019-427.
  • Savage, N., and J. A. Huffman. 2018. Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques. Atmos. Meas. Tech. 11 (8):4929–4942. doi: 10.5194/amt-10-4279-2017.
  • Savage, N., C. Krentz, T. Könemann, T. Han, G. Mainelis, C. Pöhlker, and J. A. Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–4302. doi: 10.5194/amt-10-4279-2017.
  • Sivaprakasam, V., H. Lin, A. L. Huston, and J. D. Eversole. 2011. Spectral characterization of biological aerosol particles using two-wavelength excited laser- induced fluorescence and elastic scattering measurements. Opt. Express 19 (7):6191–6208. doi: 10.1364/OE.19.006191.
  • Songnuan, W. 2013. Wind-pollination and the roles of pollen allergenic proteins. Asian Pacific J. Allergy Immunol. 31 (4):261. doi: 10.12932/AP0287.31.4.2013.
  • Stach, A., M. Smith, J. C. Prieto Baena, and J. Emberlin. 2008. Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ. Exp. Bot. 62 (3):323–332. doi: 10.1016/j.envexpbot.2007.10.005.
  • Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn. 2007. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8 (1):25. doi: 10.1186/1471-2105-8-25.
  • Swanson, B., and J. A. Huffman. 2018. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Opt. Express 26 (3):3646–3660. doi: 10.1364/OE.26.003646.
  • Tello-Mijares, S., and F. Flores. 2016. A novel method for the separation of overlapping pollen species for automated detection and classification. Comput. Math. Methods Med. 2016:1–12. doi: 10.1155/2016/5689346.
  • Tseng, Y.-T., and S. Kawashima. 2019. Applying a pollen forecast algorithm to the Swiss Alps clarifies the influence of topography on spatial representativeness of airborne pollen data. Atmos. Environ. 212:153–162. doi: 10.1016/j.atmosenv.2019.05.052.
  • Weber, R. W. 2010. Pollen identification. Ann. Allergy, Asthma Immunol. 80 (2):141–148. doi: 10.1016/S1081-1206(10)62947-X.
  • Wlodarski, M., M. Kaliszewski, M. Kwasny, K. Kopczynski, Z. Zawadzki, Z. Mierczyk, J. Mlynczak, E. Trafny, and M. Szpakowska. 2006. Fluorescence excitation-emission matrices of selected biological materials. Optically Based Biological and Chemical Detection for Defence III, Stockholm, Sweden, 639806. doi: 10.1117/12.687872.
  • Wu, Y., A. Calis, Y. Luo, C. Chen, M. Lutton, Y. Rivenson, X. Lin, H. C. Koydemir, Y. Zhang, H. Wang, et al. 2018. Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 5 (11):4617–4627. doi: 10.1021/acsphotonics.8b01109.
  • Zhu, W., Q. Liu, and Y. Wu. 2015. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer. Opt. Express 23 (18):23108–23116. doi: 10.1364/OE.23.023108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.