1,276
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

In situ aerosol acidity measurements using a UV–Visible micro-spectrometer and its application to the ambient air

, , , &
Pages 446-461 | Received 18 Oct 2019, Accepted 18 Dec 2019, Published online: 22 Jan 2020

References

  • Beardsley, L. R., and M. Jang. 2016. Simulating the soa formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics. Atmos. Chem. Phys. 16 (9):5993–6009. doi:10.5194/acp-16-5993-2016.
  • Bertram, A., S. Martin, S. Hanna, M. Smith, A. Bodsworth, Q. Chen, M. Kuwata, A. Liu, Y. You, and S. Zorn. 2011. Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos. Chem. Phys. 11:10995–1006. doi:10.5194/acp-11-10995-2011.
  • Bertram, T. H., R. E. Cochran, V. H. Grassian, and E. A. Stone. 2018. Sea spray aerosol chemical composition: Elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem. Soc. Rev. 47 (7):2374–400. doi:10.1039/C7CS00008A.
  • Bunnett, J. F., and F. P. Olsen. 1966. Linear free energy relations concerning reaction rates in moderately concentrated mineral acids. Can. J. Chem. 44 (16):1917–31. doi:10.1139/v66-287.
  • Chow, J. C., J. G. Watson, M. C. Green, X. Wang, L. W. A. Chen, D. L. Trimble, P. M. Cropper, S. D. Kohl, and S. B. Gronstal. 2018. Separation of brown carbon from black carbon for improve and chemical speciation network pm2.5 samples. Journal of the Air & Waste Management Association 68:494–510. doi:10.1080/10962247.2018.1426653.
  • Christ, C. L. 1965. Solutions, minerals, and equilibria. Harper & Row.
  • Clegg, S., and A. S. Wexler. 2011. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 2. The systems h+− hso4−− so42−− h2o from 0 to 3 mol kg− 1 as a function of temperature and h+− nh4+− hso4−− so42−− h2o from 0 to 6 mol kg− 1 at 25° c using a pitzer ion interaction model, and nh4hso4− h2o and (nh4) 3h (so4) 2− h2o over the entire concentration range. J. Phys. Chem. A 115:3461–74. doi:10.1021/jp1089933.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler. 1998. Thermodynamic model of the system h+-nh4+-na+-so42–nb3–cl–h2o at 298.15 k. J. Phys. Chem. A 102 (12):2155–71. doi:10.1021/jp973043j.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler. 1998. Thermodynamic model of the system h+-nh4+-so42--no3−-h2o at tropospheric temperatures. J. Phys. Chem. A 102 (12):2137–54. doi:10.1021/jp973042r.
  • Colberg, C. A., B. P. Luo, H. Wernli, T. Koop, and T. Peter. 2003. A novel model to predict the physical state of atmospheric h2so4/nh3/h2o aerosol particles. Atmos. Chem. Phys. 3 (4):909–24. doi:10.5194/acp-3-909-2003.
  • Cox, R. A., and K. Yates. 1978. Excess acidities - generalized method for determination of basicities in aqueous acid mixtures. J. Am. Chem. Soc. 100 (12):3861–7. doi:10.1021/ja00480a033.
  • Cox, R. A., and K. Yates. 1979. Kinetic equations for reactions in concentrated aqueous acids based on the concept of “excess acidity.” Can. J. Chem. 57 (22):2944–51. doi:10.1139/v79-479.
  • Craig, R. L., L. Nandy, J. L. Axson, C. S. Dutcher, and A. P. Ault. 2017. Spectroscopic determination of aerosol ph from acid–base equilibria in inorganic, organic, and mixed systems. J. Phys. Chem. A 121 (30):5690–9. doi:10.1021/acs.jpca.7b05261.
  • Day, D. A., D. K. Farmer, A. H. Goldstein, P. J. Wooldridge, C. Minejima, and R. C. Cohen. 2009. Observations of nox, σpns, σans, and hno3 at a rural site in the california sierra nevada mountains: Summertime diurnal cycles. Atmos. Chem. Phys. 9 (14):4879–96. doi:10.5194/acp-9-4879-2009.
  • Grahame, T., and R. Schlesinger. 2005. Evaluating the health risk from secondary sulfates in eastern north american regional ambient air particulate matter. Inhalation Toxicology 17 (1):15–27. doi:10.1080/08958370590885672.
  • Guo, H., L. Xu, A. Bougiatioti, K. M. Cerully, S. L. Capps, J. R. Hite, Jr, A. G. Carlton, S. H. Lee, M. H. Bergin, N. L. Ng, et al., 2015. Fine-particle water and ph in the southeastern united states. Atmos. Chem. Phys. 15 (9):5211–28. doi:10.5194/acp-15-5211-2015.
  • Habib, G., C. Venkataraman, T. C. Bond, and J. J. Schauer. 2008. Chemical, microphysical and optical properties of primary particles from the combustion of biomass fuels. Environ. Sci. Technol. 42 (23):8829–34. doi:10.1021/es800943f.
  • Hallquist, M., J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, et al., 2009. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 9 (14):5155–236. doi:10.5194/acp-9-5155-2009.
  • Hammett, L. P., and A. J. Deyrup. 1932. A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. Soc. 54 (7):2721–39. doi:10.1021/ja01346a015.
  • Hanke, M., B. Umann, J. Uecker, F. Arnold, and H. Bunz. 2003. Atmospheric measurements of gas-phase hno3 and so2 using chemical ionization mass spectrometry during the minatroc field campaign 2000 on monte cimone. Atmos. Chem. Phys. 3 (2):417–36. doi:10.5194/acp-3-417-2003.
  • Hennigan, C. J., J. Izumi, A. P. Sullivan, R. J. Weber, and A. Nenes. 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 15 (5):2775–90. doi:10.5194/acp-15-2775-2015.
  • Huntzicker, J. J., R. A. Cary, and C. S. Ling. 1980. Neutralization of sulfuric-acid aerosol by ammonia. Environ. Sci. Technol. 14 (7):819–24. doi:10.1021/es60167a009.
  • Im, Y., M. Jang, and R. Beardsley. 2014. Simulation of aromatic soa formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol phase reactions. Atmos. Chem. Phys. Discuss. 13 (3):5843–70. doi:10.5194/acpd-13-5843-2013.
  • Jang, M. 2013. Devices and methods for measuring the acidity of airborne matter using uv-visible spectrometry (Patent Number: US8557184B2). USA: University of Florida Research Foundation.
  • Jang, M., G. Cao, and J. Paul. 2008. Colorimetric particle acidity analysis of secondary organic aerosol coating on submicron acidic aerosols. Aerosol Sci. Technol 42 (6):409–20. doi:10.1080/02786820802154861.
  • Jang, M., N. M. Czoschke, S. Lee, and R. M. Kamens. 2002. Heterogeneous atmospheric aerosol production by acid- catalyzed particle-phase reactions. Science 298 (5594):814–7. doi:10.1126/science.1075798.
  • Jang, M., and R. M. Kamens. 2001. Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ. Sci. Technol. 35 (24):4758–66. doi:10.1021/es010790s.
  • Jeong, G. Y., S. J. Kim, and S. J. Chang. 2003. Black carbon pollution of speleothems by fine urban aerosols in tourist caves. Am Mineral 88 (11-12):1872–8. doi:10.2138/am-2003-11-1230.
  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–9. doi:10.1126/science.1180353.
  • Jungnikl, K., M. Rappolt, I. Shyjumon, B. Sartori, P. Laggner, and H. Amenitsch. 2011. Aerosol flow reactor with controlled temperature gradient for in situ gas-phase x-ray experiments-measurements of evaporation-induced self-assembly (eisa) in aerosols. Aerosol Sci Tech 45 (7):805–10. doi:10.1080/02786826.2011.564680.
  • Lawal, A. S., X. Guan, C. Liu, L. R. Henneman, P. Vasilakos, V. Bhogineni, R. J. Weber, A. Nenes, and A. G. Russell. 2018. Linked response of aerosol acidity and ammonia to so2 and no x emissions reductions in the united states. Environ. Sci. Technol. 52:9861–73. doi:10.1021/acs.est.8b00711.
  • Li, J., and M. Jang. 2012. Aerosol acidity measurement using colorimetry coupled with a reflectance uv-visible spectrometer. Aerosol Sci. Technol 46 (8):833–42. doi:10.1080/02786826.2012.669873.
  • Li, J., M. Jang, and R. L. Beardsley. 2015. Dialkylsulfate formation in sulfuric acid seeded secondary organic aerosol produced using an outdoor chamber under natural sunlight. Environ. Chem. 13 (4):590–601. doi:10.1071/EN15129.
  • Liang, J., and M. Z. Jacobson. 1999. A study of sulfur dioxide oxidation pathways over a range of liquid water contents, ph values, and temperatures. J. Geophys. Res. 104 (D11):13749–69. doi:10.1029/1999JD900097.
  • Liggio, J., S.-M. Li, and R. McLaren. 2005. Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters. Environ. Sci. Technol. 39 (6):1532–41. doi:10.1021/es048375y.
  • Lippmann, M. 1985. Airborne acidity - estimates of exposure and human health-effects. Environ. Health Persp. 63:63–70. doi:10.1289/ehp.856363.
  • Loeffler, K. W., C. A. Koehler, N. M. Paul, and D. O. De Haan. 2006. Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environ. Sci. Technol. 40:6318–23. doi:10.1021/es060810w.
  • Mcclenny, W. A., K. J. Krost, E. H. Daughtrey, D. D. Williams, and G. A. Allen. 1994. Speciation of ambient sulfate particulate matter using ft-ir-based absorption to complement wet chemical and thermal speciation measurements. Appl Spectrosc. 48 (6):706–12. doi:10.1366/000370294774368956.
  • Murphy, J. G., P. K. Gregoire, A. G. Tevlin, G. R. Wentworth, R. A. Ellis, M. Z. Markovic, and T. C. VandenBoer. 2017. Observational constraints on particle acidity using measurements and modelling of particles and gases. Faraday Discuss. 200:379–95. doi:10.1039/C7FD00086C.
  • Nenes, A., S. N. Pandis, and C. Pilinis. 1998. Isorropia. A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4 (1):123–52. doi.
  • Nenes, A., S. N. Pandis, and C. Pilinis. 1998. Isorropia: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4 (1):123–52. doi:
  • Peng, X., P. Vasilakos, A. Nenes, G. Shi, Y. Qian, X. Shi, Z. Xiao, K. Chen, Y. Feng, and A. G. Russell. 2019. A detailed analysis of estimated ph, activity coefficients and ion concentrations between the three aerosol thermodynamic models. Environ. Sci. Technol. doi:10.1021/acs.est.9b00181.
  • Peng, Y. P., K. S. Chen, C. H. Lai, P. J. Lu, and J. H. Kao. 2006. Concentrations of h2o2 and hno3 and o3–voc–nox sensitivity in ambient air in southern taiwan. Atmos. Environ. 40 (35):6741–51. doi:. doi:10.1016/j.atmosenv.2006.05.079.
  • Perrin, C. 1964. On relation between h0 + water activity. J. Am. Chem. Soc. 86 (2):256–8. doi:10.1021/ja01056a032.
  • Perry, R. H. 1984. Perry’s chemical engineering handbook, 364–6. New York: Mcgraw-Hill Cor.
  • Raizenne, M., L. M. Neas, A. I. Damokosh, D. W. Dockery, J. D. Spengler, P. Koutrakis, J. H. Ware, and F. E. Speizer. 1996. Health effects of acid aerosols on north american children: Pulmonary function. Environ. Health Persp. 104 (5):506–14. doi:10.1289/ehp.96104506.
  • Reis, S., P. Grennfelt, Z. Klimont, M. Amann, H. ApSimon, J. P. Hettelingh, M. Holland, A. C. LeGall, R. Maas, M. Posch, et al, 2012. From acid rain to climate change. Science 338 (6111):1153–4. doi:10.1126/science.1226514.
  • Rindelaub, J. D., R. L. Craig, L. Nandy, A. L. Bondy, C. S. Dutcher, P. B. Shepson, and A. P. Ault. 2016. Direct measurement of ph in individual particles via raman microspectroscopy and variation in acidity with relative humidity. J. Phys. Chem. A 120 (6):911–7. doi:10.1021/acs.jpca.5b12699.
  • Song, S. J., M. Gao, W. Q. Xu, J. Y. Shao, G. L. Shi, S. X. Wang, Y. X. Wang, Y. L. Sun, and M. B. McElroy. 2018. Fine-particle ph for beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 18 (10):7423–38. doi:10.5194/acp-18-7423-2018.
  • Spengler, J. D., M. Brauer, and P. Koutrakis. 1990. Acid air and health. Environ. Sci. Technol. 24 (7):946–56. doi:10.1021/es00077a002.
  • Spicer, C. W. 1983. Smog chamber studies of nitrogen oxide (nox) transformation rate and nitrate precursor relationships. Environ. Sci. Technol. 17:112–20. doi:10.1021/es00108a010.
  • Surratt, J. D., J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, et al, 2007. Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 41 (2):517–27. doi:10.1021/es062081q.
  • Tanner, R. L., B. P. Leaderer, and J. D. Spengler. 1981. Acidity of atmospheric aerosols. Environ. Sci. Technol. 15:1150–3. doi:10.1021/es00092a003.
  • Thurston, G. D., K. Ito, C. G. Hayes, D. V. Bates, and M. Lippmann. 1994. Respiratory hospital admissions and summertime haze air-pollution in toronto, ontario - consideration of the role of acid aerosols. Environ. Res. 65 (2):271–90. doi:10.1006/enrs.1994.1037.
  • Wang, R., S. Tao, W. T. Wang, J. F. Liu, H. Z. Shen, G. F. Shen, B. Wang, X. P. Liu, W. Li, Y. Huang, et al, 2012. Black carbon emissions in china from 1949 to 2050. Environ. Sci. Technol. 46 (14):7595–603. doi:10.1021/es3003684.
  • Wexler, A. S., and S. L. Clegg. 2002. Atmospheric aerosol models for systems including the ions h+, nh4+, na+, so42−, no3−, cl−, br−, and h2o. J. Geophys. Res. 107 (D14):4207. doi:10.1029/2001JD000451.
  • Zhong, M., and M. Jang. 2014. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmos. Chem. Phys. 14 (3):1517–25. doi:10.5194/acp-14-1517-2014.
  • Zhou, C., M. Jang, and Z. Yu. 2019. Simulation of soa formation from the photooxidation of monoalkylbenzenes in the presence of aqueous aerosols containing electrolytes under various nox levels. Atmos. Chem. Phys. 19 (8):5719–35. doi:10.5194/acp-19-5719-2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.