1,265
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Development and validation of a multi-angle light scattering method for fast engine soot mass and size measurements

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1083-1101 | Received 24 Nov 2019, Accepted 14 Apr 2020, Published online: 13 May 2020

References

  • Altenhoff, M., S. Aßmann, J. F. A. Perlitz, F. J. T. Huber, and S. Will. 2019. Soot aggregate sizing in an extended premixed flame by high-resolution two-dimensional multi-angle light scattering (2D-MALS). Appl. Phys. B 125 (9):125–76. doi:10.1007/s00340-019-7282-0.
  • Altenhoff, M., S. Aßmann, C. Teige, F. J. T. Huber, and S. Will. 2020. An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy. J. Aerosol Sci. 139:105470. doi:10.1016/j.jaerosci.2019.105470.
  • Amanatidis, S., M. M. Maricq, L. Ntziachristos, and Z. Samaras. 2017. Application of the dual Pegasor Particle Sensor for real-time measurement of motor vehicle exhaust PM. J. Aerosol Sci. 103:93–104. doi:10.1016/j.jaerosci.2016.10.005.
  • Amin, H. M. F., and W. L. Roberts. 2017. Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5 atm. Proc. Combust. Inst. 36 (1):861–9. doi:10.1016/j.proci.2016.06.044.
  • Baldelli, A., and S. N. Rogak. 2019. Morphology and Raman spectra of aerodynamically classified soot samples. Atmos. Meas. Tech. 12 (8):4339–46. doi:10.5194/amt-12-4339-2019.
  • Baldelli, A., U. Trivanovic, and S. N. Rogak. 2019. Electron tomography of soot for validation of 2D image processing and observation of new structural features. Aerosol Sci. Technol. 53 (5):575–82. doi:10.1080/02786826.2019.1578860.
  • Bescond, A., J. Yon, F. –X. Ouf, C. Rozé, A. Coppalle, P. Parent, D. Ferry, and C. Laffon. 2016. Soot optical properties determined by analysing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. Journal of Aerosols Science 101:118–32. doi:10.1016/j.jaerosci.2016.08.001.
  • Bohren, C. F., and D. R. Huffman. 1983. Absorption and scattering of light by small particles. New York: John Wiley and Sons.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An Investigative Review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Brasil, A. M., T. L. Farias, and M. G. Carvalho. 1999. A recipe for image characterization of fractal-like aggregates. J. Aerosol Sci. 30 (10):1379–89. doi:10.1016/S0021-8502(99)00026-9.
  • Brook, R. D., Rajagopalan, S. C. A. Pope, I. I. I. J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121 (21):2331–78. doi:10.1161/CIR.0b013e3181dbece1.
  • Burr, D. W., K. J. Daun, O. Link, K. A. Thomson, and G. J. Smallwood. 2011. Determination of the soot aggregate size distribution from elastic light scattering through Bayesian inference. J. Quant. Spectrosc. Radiat. Transf. 112 (6):1099–107. doi:10.1016/j.jqsrt.2010.12.001.
  • Caumont-Prim, C., J. Yon, A. Coppalle, F. Ouf, and K. F. Ren. 2013. Measurement of aggregates’ size distribution by angular light scattering. J. Quant. Spectrosc. Radiat. Transf. 126:140–9. doi:10.1016/j.jqsrt.2012.07.029.
  • Dastanpour, R., J. M. Boone, and S. N. Rogak. 2016. Automated primary particle sizing of nanoparticle aggregates by TEM image analysis. Powder Technol. 295:218–24. doi:10.1016/j.powtec.2016.03.027.
  • Dastanpour, R., A. Momenimovahed, K. Thomson, J. Olfert, and S. Rogak. 2017. Variation of the optical properties of soot as a function of particle mass. Carbon 124:201–11. doi:10.1016/j.carbon.2017.07.005.
  • Dastanpour, R., and S. N. Rogak. 2014. Observations of a correlation between the primary particle and aggregate size for soot particles. Aerosol Sci. Technol. 48 (10):1043–9. doi:10.1080/02786826.2014.955565.
  • Dastanpour, R., S. N. Rogak, B. Graves, J. Olfert, M. L. Eggersdorfer, and A. M. Boies. 2016. Improved sizing of soot primary particles using mass-mobility measurements. Aerosol Sci. Technol. 50 (2):101–9. doi:10.1080/02786826.2015.1130796.
  • Davis, P. W., and M. S. Peckham. 2006. Measurement of cycle-by-cycle AFR using a fast response NDIR analyzer for cold start fueling calibration applications. 2006-01-1515. SAE Technical Paper.
  • De Iuliis, S., F. Cignoli, S. Benecchi, and G. Zizak. 1998. Determination of soot parameters by a two-angle scattering–extinction technique in an ethylene diffusion flame. Appl. Opt. 37 (33):7865–74. doi:10.1364/AO.37.007865.
  • Dobbins, R., and C. M. Megaridis. 1991. Absorption and scattering of light by polydisperse aggregates. Appl. Opt. 30 (33):4747–54. doi:10.1364/AO.30.004747.
  • Eggersdorfer, M. L., A. J. Gröhn, C. M. Sorensen, P. H. McMurry, and S. E. Pratsinis. 2012. Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. J. Colloid Interface Sci. 387 (1):12–23. doi:10.1016/j.jcis.2012.07.078.
  • Faghani, E., P. Kheirkhah, C. W. J. Mabson, G. McTaggart-Cowan, P. Kirchen, and S. Rogak. 2017. Effect of injection strategies on emissions from a pilot-ignited direct-injection natural-gas engine- Part I: Late post injection. 2017-01-0774. SAE Technical Paper. doi:10.4271/2017-01-0774.
  • Farias, T. L., Köylü, Ü. Carvalho. Ö., and M. G. 1996. Range of validity of the Rayleigh-Debye-Gans theory of optics of fractal aggregates. Appl. Opt. 35 (33):6560–7. doi:10.1364/AO.35.006560.
  • Graves, B., J. Olfert, B. Patychuk, R. Dastanpour, and S. Rogak. 2015. Characterization of particulate matter morphology and volatility from a compression-ignition natural-gas direct-injection engine. Aerosol Sci. Technol. 49 (8):589–98. doi:10.1080/02786826.2015.1050482.
  • Hagena, J. R., D. N. Assanis, and Z. S. Filipi. 2011. Cycle-resolved measurements of in-cylinder constituents during diesel engine transients and insight into their impact on emissions. Proc. Inst. Mech. Eng., Part D: J. Automobile Eng. 225 (9):1103–17. doi:10.1177/0954407011414997.
  • Hagena, J. R., Z. S. Filipi, and D. N. Assanis. 2006. Transient diesel emissions: Analysis of engine operation during a tip-in. 2006-01-1151. SAE Technical Paper.
  • Heywood, J. B. 1988. Thermochemistry of fuel-air mixtures. In Internal combustion engine fundamentals, 62–99. New York: McGraw-Hill.
  • Holve, D. J. 2011. Two-Angle Ratio Scattering (STAR) method for real-time measurement of agglomerate soot concentration and size. Theory Aerosol Sci. Technol. 45 (11):1388–99. doi:10.1080/02786826.2011.596172.
  • Holve, D. J., J. Chapman, and R. Graze. 2011. Two-Angle Ratio Scattering (STAR) method for real-time measurement of agglomerate soot concentration and size: Experimental measurements. Aerosol Sci. Technol. 45 (11):1400–7. doi:10.1080/02786826.2011.596173.
  • Huber, F. J. T., S. Will, and K. J. Daun. 2016. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data. J. Quant. Spectrosc. Radiat. Transf. 184 (1):27–39. doi:10.1016/j.jqsrt.2016.06.030.
  • Hurd, A. J., and W. L. Flower. 1988. In situ growth and structure of fractal silica aggregates in a flame. J. Colloid Interface Sci. 122 (1):178–92. doi:10.1016/0021-9797(88)90301-3.
  • Jones, H. L. 2004. Source and characterization of particulate matter from a pilot-ignited natural gas fuelled engine. MASc. thesis., The University of British Columbia.
  • Jurányi, Z., M. Loepfe, M. Nenkov, and H. Burtscher. 2017. Multi-angle, dual wavelength scattering measurement chamber for the structural measurement of combustion generated particles. J. Aerosol Sci. 103:83–92. doi:10.1016/j.jaerosci.2016.10.007.
  • Kelesidis, G. A., and S. E. Pratsinis. 2019. Soot light absorption and refractive index during agglomeration and surface growth. Proc. Combust. Inst. 37 (1):1177–84. doi:10.1016/j.proci.2018.08.025.
  • Kheirkhah, P., P. Kirchen, and S. Rogak. 2016. Fast Exhaust Nephelometer (FEN): A new instrument for measuring cycle-resolved engine particulate emission. 2016-01-2329. SAE Technical Paper. doi:10.4271/2016-01-2329.
  • Kirchen, P. 2008. Steady-state and transient diesel soot emissions: Development of a mean value soot model and exhaust-stream and in-cylinder measurements. Doctoral diss., ETH Zurich.
  • Köylü, Ü., G. M. Faeth, T. L. Farias, and M. G. Carvalho. 1995. Fractal and projected structure properties of soot aggregates. Combust. Flame 100 (4):621–33. doi:10.1016/0010-2180(94)00147-K.
  • Lin, M. Y., R. Klein, H. M. Lindsay, D. A. Weitz, R. C. Ball, and P. Meakin. 1990. The structure of fractal colloidal aggregates of finite extent. J. Colloidal Interface Sci. 137 (1):263–80. doi:10.1016/0021-9797(90)90061-R.
  • Liu, F., J. Yon, and A. Bescond. 2016. On the radiative properties of soot aggregates – Part 2: Effects of coating. J. Quant. Spectrosc. Radiat. Transf. 172:134–45. doi:10.1016/j.jqsrt.2015.08.005.
  • Liu, F., J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbin. 2020. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54 (1):33–51. doi:10.1080/02786826.2019.1676878.
  • Maekin, P. 1987. Fractal aggregates. Adv. Colloid Interface Sci. 28:249–331.
  • McTaggart-Cowan, G. P. 2006. Pollutant formation in a gaseous-fuelled, direct injection engine. PhD diss., The University of British Columbia.
  • Mctaggart-Cowan, G. P., H. L. Jones, S. N. Rogak, W. K. Bushe, P. G. Hill, and S. R. Munshi. 2007. The effects of high-pressure injection on a compression–ignition, direct injection of natural gas engine. J. Eng. Gas Turbines Power 129 (2):579–88. doi:10.1115/1.2432894.
  • Moghaddam, S. T., P. J. Hadwin, and K. J. Daun. 2017. Soot aggregate sizing through multiangle elastic light scattering: Influence of the model error. J. Aerosol Sci. 111 (1):36–50. doi:10.1016/j.jaerosci.2017.06.003.
  • Oh, C., and C. M. Sorensen. 1997. The effect of overlap between monomers on the determination of fractal cluster morphology. J. Colloid Interface Sci. 193 (1):17–25. doi:10.1006/jcis.1997.
  • Olfert, J., and S. Rogak. 2019. Universal correlations between soot effective density and primary particle size for common combustion sources. Aerosol Sci. Technol. 53 (5):485–92. doi:10.1080/02786826.2019.1577949.
  • Oltmann, H., J. Reimann, and S. Will. 2010. Wide-angle light scattering (WALS) for soot aggregate characterization. Combust. Flame 157 (3):516–22. doi:10.1016/j.combustflame.2009.10.011.
  • Oltmann, H., J. Reimann, and S. Will. 2012. Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS). Appl. Phys. B 106 (1):171–83. doi:10.1007/s00340-011-4781-z.
  • Ouf, F. –X., J. Vendel, A. Coppalle, M. Weill, and J. Yon. 2008. Characterization of soot particles in the plumes of over-ventilated diffusion flames. Combust. Sci. Technol. 180 (4):674–98. doi:10.1080/00102200701839154.
  • Patychuk, B., and S. N. Rogak. 2012. Particulate matter emission characterization from a natural gas fuelled high pressure direct injection engine. In Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference, 447–55. American Society of Mechanical Engineers Digital Collection. doi:10.1115/ICEF2012-92170.
  • Peckham, M. S., A. Finch, B. Campbell, P. Price, and M. T. Davies. 2011. Study of particle number emissions from a turbocharged gasoline direct injection (GDI) engine including data from fast-response particle size spectrometer. 2011-01-1224. SAE Technical Paper.
  • Rogak, S. N., R. C. Flagan, and H. V. Nguyen. 1993. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18 (1):25–47. doi:10.1080/02786829308959582.
  • Sorensen, C. M. 2001. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 35 (2):648–87. doi:10.1080/02786820117868.
  • Sorensen, C. M. 2011. The mobility of fractal aggregates: A review. Aerosol Sci. Technol. 45 (7):765–79. doi:10.1080/02786826.2011.560909.
  • Sorensen, C. M., J. Yon, F. Liu, J. Maughan, W. R. Heinson, and M. J. Berg. 2018. Light scattering and absorption by fractal aggregates including soot. J. Quant. Spectrosc. Radiat. Transf. 217 (1):459–73. doi:10.1016/j.jqsrt.2018.05.016.
  • van de Hulst, H. C. 1981. Light scattering by small particles. New York: Dover Publications.
  • Witze, P. O., R. E. Chase, M. M. Maricq, D. H. Podsiadlik, and N. Xu. 2004. Time-resolved measurements of exhaust PM for FTP-75: Comparison of LII, ELPI, and TEOM Techniques. 2004-01-0964. SAE Technical Paper.
  • Yon, J., A. Bescond, and F. Liu. 2015. On the radiative properties of soot aggregates part 1: Necking and overlapping. J. Quant. Spectrosc. Radiat. Transf. 162:197–206. doi:10.1016/j.jqsrt.2015.03.027.
  • Yon, J., A. Bescond, and F. –X. Ouf. 2015. A simple semi-empirical model for effective density measurements of fractal aggregates. J. Aerosol Sci. 87:28–37. doi:10.1016/j.jaerosci.2015.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.