1,758
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1197-1209 | Received 24 Jan 2020, Accepted 27 Apr 2020, Published online: 28 May 2020

References

  • Allen, M. D., and O. G. Raabe. 1985. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Technol. 4 (3):269–286. doi:10.1080/02786828508959055.
  • Covert, D., A. Wiedensohler, and L. Russell. 1997. Particle charging and transmission efficiencies of aerosol charge neutralizes. Aerosol Sci. Technol. 27 (2):206–214. doi:10.1080/02786829708965467.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 38 (12):1185–1205. doi:10.1080/027868290903907.
  • Ehara, K., C. Hagwood, and K. J. Coakley. 1996. Novel method to classify aerosol particles according to their mass-to-charge ratio—Aerosol particle mass analyser. J. Aerosol Sci. 27 (2):217–234. doi:10.1016/0021-8502(95)00562-5.
  • Hagwood, C., Y. Sivathanu, and G. Mulholland. 1999. The DMA transfer function with Brownian motion a trajectory/Monte-Carlo approach. Aerosol Sci. Technol. 30 (1):40–61. doi:10.1080/027868299304877.
  • Hand, J. L., and S. M. Kreidenweis. 2002. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol. 36 (10):1012–1026. doi:10.1080/02786820290092276.
  • Hinds, W. C. 1999. Aerosol technology: Properties. In Behavior, and measurement of airborne particles. New York, NY: John Wiley & Sons, Inc.
  • Johnson, T. J., M. Irwin, J. P. R. Symonds, J. S. Olfert, and A. M. Boies. 2018. Measuring aerosol size distributions with the aerodynamic aerosol classifier. Aerosol Sci. Technol. 52 (6):655–665. doi:10.1080/02786826.2018.1440063.
  • Kasper, G. 1982. Dynamics and measurement of smokes. I. Size characterization of nonspherical particles. Aerosol Sci. Technol. 1 (2):187–199. doi:10.1080/02786828208958587.
  • Kazemimanesh, M., A. Moallemi, K. Thomson, G. Smallwood, P. Lobo, and J. S. Olfert. 2019. A novel miniature inverted-flame burner for the generation of soot nanoparticles. Aerosol Sci. Technol. 53 (2):184–195. doi:10.1080/02786826.2018.1556774.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–451. doi:10.1016/0021-8502(75)90060-9.
  • Kulkarni, P., P. A. Baron, and K. Willeke. ed. 2011. Aerosol measurement: Principles, techniques and applications. Hoboken, NJ: John Wiley & Sons, Inc. doi:10.1002/9781118001684.
  • Kuwata, M. 2015. Particle classification by the tandem differential mobility analyzer–particle mass analyzer system. Aerosol Sci. Technol. 49 (7):508–520. doi:10.1080/02786826.2015.1045058.
  • Lall, A., X. Ma, S. Guha, G. Mulholland, and M. Zachariah. 2009. Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements. Aerosol Sci. Technol. 43 (11):1075–1083. doi:10.1080/02786820903095484.
  • Lall, A. A., W. Rong, L. Mädler, and S. K. Friedlander. 2008. Nanoparticle aggregate volume determination by electrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements. J. Aerosol Sci. 39 (5):403–417. doi:10.1016/j.jaerosci.2007.12.010.
  • Mai, H., and R. C. Flagan. 2018. Scanning DMA data analysis I. Classification transfer function. Aerosol Sci. Technol. 52 (12):1382–1399. doi:10.1080/02786826.2018.1528005.
  • Mamakos, A. 2016. Methodology to quantify the ratio of multiple-to single-charged fractions acquired in aerosol neutralizers. Aerosol Sci. Technol. 50 (4):363–372. doi:10.1080/02786826.2016.1153034.
  • Maricq, M. M., D. H. Podsiadlik, and R. E. Chase. 2000. Size distributions of motor vehicle exhaust PM: A comparison between ELPI and SMPS measurements. Aerosol Sci. Technol. 33 (3):239–260. doi:10.1080/027868200416231.
  • McMurry, P. H., X. Wang, K. Park, and K. Ehara. 2002. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Technol. 36 (2):227–238. doi:10.1080/027868202753504083.
  • Olfert, J. S. 2005. A numerical calculation of the transfer function of the fluted centrifugal particle mass analyzer. Aerosol Sci. Technol. 39 (10):1002–1009. doi:10.1080/02786820500380222.
  • Olfert, J. S., and N. Collings. 2005. New method for particle mass classification—The Couette centrifugal particle mass analyzer. J. Aerosol Sci. 36 (11):1338–1352. doi:10.1016/j.jaerosci.2005.03.006.
  • Olfert, J. S., J. P. R. Symonds, and N. Collings. 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J. Aerosol Sci. 38 (1):69–82. doi:10.1016/j.jaerosci.2006.10.002.
  • Park, K., D. Dutcher, M. Emery, J. Pagels, H. Sakurai, J. Scheckman, S. Qian, M. R. Stolzenburg, X. Wang, J. Yang, et al. 2008. Tandem measurements of aerosol properties—A review of mobility techniques with extensions. Aerosol Sci. Technol. 42 (10):801–816. doi:10.1080/02786820802339561.
  • Radney, J. G., R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister. 2014. Dependence of soot optical properties on particle morphology: Measurements and model comparisons. Environ. Sci. Technol. 48 (6):3169–3176. doi:10.1021/es4041804.
  • Radney, J. G., and C. D. Zangmeister. 2016. Practical limitations of aerosol separation by a tandem differential mobility analyzer–aerosol particle mass analyzer. Aerosol Sci. Technol. 50 (2):160–172. doi:10.1080/02786826.2015.1136733.
  • Rawat, V. K., D. T. Buckley, S. Kimoto, M.-H. Lee, N. Fukushima, and C. J. Hogan. Jr, 2016. Two dimensional size–mass distribution function inversion from differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) measurements. J. Aerosol Sci. 92:70–82. doi:10.1016/j.jaerosci.2015.11.001.
  • Rogak, S. N., R. C. Flagan, and H. V. Nguyen. 1993. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18 (1):25–47. doi:10.1080/02786829308959582.
  • Sipkens, T. A., J. S. Olfert, and S. N. Rogak. 2020a. Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods. J. Aerosol Sci. 140:105484. doi:10.1016/j.jaerosci.2019.105484.
  • Sipkens, T. A., J. S. Olfert, and S. N. Rogak. 2020b. New approaches to calculate the transfer function of particle mass analyzers. Aerosol Sci. Technol. 54 (1):111–127. doi:10.1080/02786826.2019.1680794.
  • Stolzenburg, M. R. 2018. A review of transfer theory and characterization of measured performance for differential mobility analyzers. Aerosol Sci. Technol. 52 (10):1194–1175. doi:10.1080/02786826.2018.1514101.
  • Stolzenburg, M. R., and P. H. McMurry. 2018. Accuracy of recovered moments for narrow mobility distributions obtained with commonly used inversion algorithms for mobility size spectrometers. Aerosol Sci. Technol. 52 (6):614–625. doi:10.1080/02786826.2018.1455963.
  • Tavakoli, F., and J. S. Olfert. 2013. An instrument for the classification of aerosols by particle relaxation time: Theoretical models of the aerodynamic aerosol classifier. Aerosol Sci. Technol. 47 (8):916–926. doi:10.1080/02786826.2013.802761.
  • Tavakoli, F., and J. S. Olfert. 2014. Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J. Aerosol Sci. 75:35–42. doi:10.1016/j.jaerosci.2014.04.010.
  • Tavakoli, F., J. P. R. Symonds, and J. S. Olfert. 2014. Generation of a monodisperse size-classified aerosol independent of particle charge. Aerosol Sci. Technol. 48 (3):i–iv. doi:10.1080/02786826.2013.877121.
  • Tigges, L., A. Wiedensohler, K. Weinhold, J. Gandhi, and H. J. Schmid. 2015. Bipolar charge distribution of a soft X-ray diffusion charger. J. Aerosol Sci. 90:77–86. doi:10.1016/j.jaerosci.2015.07.002.
  • Virtanen, A., J. Ristimäki, and J. Keskinen. 2004. Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci. Technol. 38 (5):437–446. doi:10.1080/02786820490445155.
  • Wang, S. C., and R. C. Flagan. 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13 (2):230–240. doi:10.1080/02786829008959441.
  • Wiedensohler, A., and H. J. Fissan. 1988. Aerosol charging in high purity gases. J. Aerosol Sci. 19 (7):867–870. doi:10.1016/0021-8502(88)90054-7.
  • You, R., J. G. Radney, M. R. Zachariah, and C. D. Zangmeister. 2016. Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and nonabsorbing materials. Environ. Sci. Technol. 50 (15):7982–7990. doi:10.1021/acs.est.6b01473.
  • Zangmeister, C. D., C. D. Grimes, R. R. Dickerson, and J. G. Radney. 2019. Characterization and demonstration of a black carbon aerosol mimic for instrument evaluation. Aerosol Sci. Technol. 53 (11):1–12. doi:10.1080/02786826.2019.1660302.
  • Zangmeister, C. D., J. G. Radney, L. T. Dockery, J. T. Young, X. Ma, R. You, and M. R. Zachariah. 2014. Packing density of rigid aggregates is independent of scale. Proc. Natl. Acad. Sci. USA 111 (25):9037–9041. doi:10.1073/pnas.1403768111.
  • Zelenyuk, A., Y. Cai, and D. Imre. 2006. From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci. Technol. 40 (3):197–217. doi:10.1080/02786820500529406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.