757
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Distribution and penetration efficiency of cylindrical nanoparticles in turbulent flows through a curved tube

, , &
Pages 1255-1269 | Received 27 Feb 2020, Accepted 10 May 2020, Published online: 04 Jun 2020

References

  • Anand, N. K., A. R. McFarland, K. D. Kihm, and F. S. Wong. 1992. Optimization of aerosol penetration through transport lines. Aerosol Sci. Technol. 16 (2):105–12. doi:10.1080/02786829208959541.
  • Armand, P., D. Boulaud, M. Pourprix, and J. Vendel. 1998. Two-fluid modeling of aerosol transport in laminar and turbulent flows. J. Aerosol Sci. 29 (8):961–83. doi:10.1016/S0021-8502(98)00006-8.
  • Balásházy, I., T. B. Martonen, and W. Hofmann. 1990. Inertial impaction and gravitational deposition of aerosols in curved tubes and airway bifurcations. Aerosol Sci. Technol. 13 (3):308–21. doi:10.1080/02786829008959447.
  • Batchelor, G. K. 1970. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44 (3):419–40. doi:10.1017/S002211207000191X.
  • Chen, S. B., and L. Jiang. 1999. Orientation distribution in a dilute suspension of fibers subject to simple shear flow. Phys. Fluid 11 (10):2878–90. doi:10.1063/1.870146.
  • Dong, S., X. Feng, M. Salcudean, and I. Gartshore. 2003. Concentration of pulp fibers in 3D turbulent channel flow. Int. J. Multiphase Flow 29 (1):1–21. doi:10.1016/S0301-9322(02)00128-3.
  • Fung, J. C. H., J. C. R. Hunt, N. A. Malik, and R. J. Perkins. 1992. Kinematic simulation of homogeneous turbulence by unsteady random Flourier modes. J. Fluid Mech. 236:281–318. doi:10.1017/S0022112092001423.
  • Ghaffarpasand, O., F. Drewnick, F. Hosseiniebalam, S. Gallavardin, J. Fachinger, S. Hassanzadeh, and S. Borrmann. 2012. Penetration efficiency of nanometer-sized aerosol particles in tubes under turbulent flow conditions. J. Aerosol Sci. 50:11–25. doi:10.1016/j.jaerosci.2012.03.002.
  • Krushkal, E. M., and I. Gallily. 1988. On the orientation distribution function of non-spherical aerosol particles in a general shear flow-ii. the turbulent case. J. Aerosol Sci. 19 (2):197–211. 8502(88)90223-6. doi:10.1016/0021-.
  • Launder, B. E. 1989a. Second-moment closure and its use in modeling turbulent industrial flows. Int. J. Numer. Methods Fluids 9 (8):963–85. doi:10.1002/fld.1650090806.
  • Launder, B. E. 1989b. Second-moment closure: Present and future? Int. J. Heat Fluid Flow 10 (4):282–300. doi:10.1016/0142-727X(89)90017-9.
  • Leal, L. G., and E. J. Hinch. 1971. Effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46 (4):685–703. doi:10.1017/S0022112071000788.
  • Lee, K. W., and J. A. Gieseke. 1994. Deposition of particles in turbulent flow pipes. J. Aerosol Sci. 25 (4):699–704. doi:10.1016/0021-8502(94)90011-6.
  • Lien, F. S., and M. A. Leschziner. 1994. Assessment of turbulent-transport models including non-linear RNG eddy-viscosity formulation and second-moment closure. Comput. Fluids 23 (8):983–1004. doi:10.1016/0045-7930(94)90001-9.
  • Lin, J. Z., L. J. Qian, H. B. Xiong, and T. L. Chan. 2009. Effects of operating conditions on droplet deposition onto surface of atomization impinging spray. Surf. Coat. Technol. 203 (12):1733–40. doi:10.1016/j.surfcoat.2009.01.009.
  • Lin, J. Z., L. X. Zhang, and W. F. Zhang. 2006. Rheological behavior of fiber suspensions in a turbulent channel flow. J. Colloid Interface Sci. 296 (2):721–8. doi:10.1016/j.jcis.2005.09.038.
  • Lin, J. Z., P. F. Lin, and H. J. Chen. 2009. Research on the transport and deposition of nanoparticles in a rotating curved pipe. Phys. Fluids 21 (12):122001. doi:10.1063/1.3264110.
  • Lin, J. Z., Z. Q. Yin, F. J. Gan, and M. Z. Yu. 2014. Penetration efficiency and distribution of aerosol particles in turbulent pipe flow undergoing coagulation and breakage. Int. J. Multiphase Flow 61:28–36. doi:10.1016/j.ijmultiphaseflow.2013.12.001.
  • Lin, J. Z., Z. Q. Yin, P. F. Lin, M. Z. Yu, and X. K. Ku. 2015. Distribution and penetration efficiency of nanoparticles between 8–550 nm in pipe bends under laminar and turbulent flow conditions. Int. J. Heat Mass Transf. 85:61–70. doi:10.1016/j.ijheatmasstransfer.2015.01.033.
  • Mackaplow, M. B., and E. S. G. Shaqfeh. 1998. A numerical study of the sedimentation of fiber suspension. J. Fluid Mech. 376:149–82. doi:10.1017/S0022112098002663.
  • Matsusaka, S. 2015. High-resolution analysis of particle deposition and resuspension in turbulent channel flow. Aerosol Sci. Technol. 49 (9):739–46. doi:10.1080/02786826.2015.1066752.
  • Michaelides, E. E. 2015. Brownian movement and thermophoresis of nanoparticles in liquids. Int. J. Heat Mass Transf. 81:179–87. doi:10.1016/j.ijheatmasstransfer.2014.10.019.
  • Muyshondt, A., N. K. Anand, and A. R. McFarland. 1996. Turbulent deposition of aerosol particles in large transport tubes. Aerosol Sci. Technol. 24 (2):107–16. doi:10.1080/02786829608965356.
  • Peters, T. M., and D. Leith. 2004. Particle deposition in industrial duct bends. Ann. Occup. Hyg. 48:483–90. doi:10.1093/annhyg/meh031.
  • Phares, D. J., and G. Sharma. 2006. A DNS Study of aerosol deposition in a turbulent square duct flow. Aerosol Sci. Technol. 40 (11):1016–24. doi:10.1080/02786820600919416.
  • Podgórski, A., L. Gradoń, and P. Grzybowski. 1995. Theoretical-study on deposition of flexible and stiff fibrous aerosol-particles on a cylindrical collector. Chem. Eng. J. 58 (2):109–21. doi:10.1016/0923-0467(95)02975-3.
  • Pui, D. Y. H., F. Romay-Novas, and B. Y. H. Liu. 1987. Experimental study of particle deposition in bends of circular cross section. Aerosol Sci. Technol. 7 (3):301–15. doi:10.1080/02786828708959166.
  • Quek, T. Y., C. H. Wang, and M. B. Ray. 2005. Dilute gas-solid flows in horizontal and vertical bends. Ind. Eng. Chem. Res. 44 (7):2301–15. doi:10.1021/ie040123i.
  • Sato, S., D. R. Chen, and D. Y. H. Pui. 2003. Particle transport at low pressure: Deposition in bends of a circular cross-section. Aerosol Sci. Technol. 37 (10):770–9. doi:10.1080/02786820300911.
  • Shapiro, M., and M. Goldenberg. 1993. Deposition of glass-fiber particles from turbulent air-flow in a tube. J. Aerosol Sci 24 (1):65–87. doi:10.1016/0021-8502(93)90085-N.
  • Sturm, R. 2015. A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs. Ann. Transl. Med. 3 (19):281. doi:10.3978/j.issn.2305-5839.2015.11.01.
  • Sun, K., L. Lu, H. Jiang, and H. H. Jin. 2013. Experimental study of solid particle deposition in 90 degrees ventilated bends of rectangular cross section with turbulent flow. Aerosol Sci. Technol. 47 (2):115–24. doi:10.1080/02786826.2012.731094.
  • Tsai, C. J., and D. Y. H. Pui. 1990. Numerical study of particle deposition in bends of a circular cross-section- laminar flow regime. Aerosol Sci. Technol. 12 (4):813–31. doi:10.1080/02786829008959395.
  • Wang, J., R. C. Flagan, and J. H. Seinfeld. 2002. Diffusional losses in particle sampling systems containing bends and elbows. J. Aerosol Sci. 33 (6):843–57. doi:10.1016/S0021-8502(02)00042-3.
  • Wang, L. P., and D. E. Stock. 1994. Numerical simulation of heavy particle dispersion-scale ration and flow decay considerations. J. Fluids. Eng. Trans. ASME 114 (1):100–6. doi:10.1115/1.2909983.
  • Webster, D. R., and J. A. C. Humphrey. 1993. Experimental observations of flow instability in a helical coil. ASME J. Fluids Eng. 115 (3):436–43. doi:10.1115/1.2910157.
  • Wilson, S. R., Y. A. Liu, E. A. Matida, and M. R. Johnson. 2011. Aerosol deposition measurements as a function of Reynolds number for turbulent flow in a ninety-degree pipe bend. Aerosol Sci. Technol. 45 (3):364–75. doi:10.1080/02786826.2010.538092.
  • Yook, S. J., and D. Y. H. Pui. 2006. Experimental study of nanoparticle penetration efficiency through coils of circular cross-sections. Aerosol Sci. Technol. 40 (6):456–62. doi:10.1080/02786820600660895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.