1,162
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Particle size distributions and hygroscopic restructuring of ultrafine particles emitted during thermal spraying

ORCID Icon, , &
Pages 1359-1372 | Received 01 Jan 2020, Accepted 08 Jun 2020, Published online: 07 Jul 2020

References

  • Agarwal, J. K., and G. J. Sem. 1980. Continuous flow, single-particle-counting condensation nucleus counter. J. Aerosol Sci. 11 (4):343–57. doi:10.1016/0021-8502(80)90042-7.
  • Anselm, A., T. Heibel, J. Gebhart, G. Ferron, and P. Inhalation. 1990. “In vivo” studies of growth factors of sodium chloride particles in the human respiratory tract. J. Aerosol Sci. 21:427–30.
  • Asbach, C., C. Alexander, S. Clavaguera, D. Dahmann, H. Dozol, B. Faure, M. Fierz, L. Fontana, I. Iavicoli, H. Kaminski, et al. 2017. Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci. Total Environ. 603-604:793–806. doi:10.1016/j.scitotenv.2017.03.049.
  • Asbach, C., S. Clavaguera, and A. M. Todea. 2016. Measurement methods for nanoparticles in indoor and outdoor air. In Indoor and outdoor nanoparticles: Determinants of release and exposure scenarios, ed. M. Viana, 19–49. Cham: Springer International Publishing. doi:10.1007/698_2015_423.
  • Bezantakos, S., K. Barmpounis, M. Giamarelou, E. Bossioli, M. Tombrou, N. Mihalopoulos, K. Eleftheriadis, J. Kalogiros, J. D. Allan, A. Bacak, et al. 2013. Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea. Atmos. Chem. Phys. 13 (22):11595–608. doi:10.5194/acp-13-11595-2013.
  • Bezantakos, S., L. Huang, K. Barmpounis, S. T. Martin, and G. Biskos. 2016. Relative humidity non-uniformities in hygroscopic tandem differential mobility analyzer measurements. J. Aerosol Sci. 101:1–9. doi:10.1016/j.jaerosci.2016.07.004.
  • Biskos, G., D. Paulsen, L. M. Russell, P. R. Buseck, and S. T. Martin. 2006b. Prompt deliquescence and efflorecence of aerosol nanoparticles. Atmos. Chem. Phys. 6 (12):4633–42. doi:10.5194/acp-6-4633-2006.
  • Biskos, G., L. M. Russell, P. R. Buseck, and S. T. Martin. 2006a. Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett. 33 (7):2–5. doi:10.1029/2005GL025199.
  • Ching, J., and M. Kajino. 2018. Aerosol mixing state matters for particles deposition in human respiratory system. Sci. Rep. 8 (1):8864. doi:10.1038/s41598-018-27156-z.
  • Coleman, T. F., and Y. Li. 1994. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67 (1-3):189–224. doi:10.1007/BF01582221.
  • Coleman, T. F., and Y. Li. 1996. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (2):418–45. doi:10.1137/0806023.
  • Dahmann, D. 2016. Exposure assessment: Methods. In Indoor and outdoor nanoparticles: Determinants of release and exposure scenarios, ed. M. Viana, 51–72. Cham: Springer International Publishing. doi:10.1007/698_2015_436.
  • Fauchais, P., A. Vardelle, and B. Dussoubs. 2001. Quo Vadis thermal spraying? J. Therm. Spray Technol. 10 (1):44–66. doi:10.1361/105996301770349510.
  • Ferron, G. A., W. G. Kreyling, and B. Haider. 1988. Inhalation of salt aerosol particles - II. Growth and deposition in the human respiratory tract. J. Aerosol Sci., 19:611–31.
  • Fonseca, A. S., A. Maragkidou, M. Viana, X. Querol, K. Hämeri, I. de Francisco, C. Estepa, C. Borrell, V. Lennikov, and G. F. de la Fuente. 2016. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release. Sci. Total Environ. 565:922–32. doi:10.1016/j.scitotenv.2016.01.106.
  • Fonseca, A. S., M. Viana, X. Querol, N. Moreno, I. de Francisco, C. Estepa, and G. F. de la Fuente. 2015. Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. J. Aerosol Sci. 88:48–57. doi:10.1016/j.jaerosci.2015.05.013.
  • Gakidou, E., A. Afshin, A. A. Abajobir, K. H. Abate, C. Abbafati, K. M. Abbas, F. Abd-Allah, A. M. Abdulle, S. F. Abera, V. Aboyans, et al. 2017. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390 (10100):1345–422. doi:10.1016/S0140-6736(17)32366-8.
  • Ganguly, P., A. Breen, and S. C. Pillai. 2018. Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 4 (7):2237–75. doi:10.1021/acsbiomaterials.8b00068.
  • Hinds, W. C. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed., John Willey & Sons, Inc., New York, USA.
  • Hussein, T., M. Maso, T. Petäjä, I. Koponen, P. Paatero, P. Aalto, K. Hämeri, and M. Kulmala. 2005. Evaluation of an automatic algorithm for fitting the particle number size distributions. Boreal Environ. Res 10:337–55.
  • Kalantzi, O., and G. Biskos. 2014. Methods for assessing basic particle properties and cytotoxicity of engineered nanaparticles. Toxics 2 (1):79–91. doi:10.3390/toxics2010079.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–51. doi:10.1016/0021-8502(75)90060-9.
  • Krämer, L., U. Pöschl, and R. Niessner. 2000. Microstructural rearrangement of sodium chloride condensation aerosol particles on interaction with water vapor. J. Aerosol Sci. 31 (6):673–85. doi:10.1016/S0021-8502(99)00551-0.
  • Kuhlbusch, T. A. J., C. Asbach, H. Fissan, D. Göhler, and M. Stintz. 2011. Nanoparticle exposure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 8:22–18. doi:10.1186/1743-8977-8-22.
  • Kuhlbusch, T. A. J., A. C. John, and U. Quass. 2009. Sources and source contributions to fine particles. Biomarkers 14 (sup1):23–8. doi:10.1080/13547500902965377.
  • Landrigan, P. J. 2017. Air pollution and health. Lancet Public Heal 2 (1):e4–e5. doi:10.1016/S2468-2667(16)30023-8.
  • Li, C.-J., Y.-Y. Wang, G.-J. Yang, A. Ohmori, and K. A. Khor. 2004. Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings. Mater. Sci. Technol. 20 (9):1087–96. doi:10.1179/026708304225019722.
  • Li, M., and P. D. Christofides. 2006. Computational study of particle in-flight behavior in the HVOF thermal spray process. Chem. Eng. Sci. 61 (19):6540–52. doi:10.1016/j.ces.2006.05.050.
  • Limbach, L. K., P. Wick, P. Manser, R. N. Grass, A. Bruinink, and W. J. Stark. 2007. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 41 (11):4158–63. doi:10.1021/es062629t.
  • Löndahl, J., A. Massling, J. Pagels, E. Swietlicki, E. Vaclavik, and S. Loft. 2007. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal. Toxicol. 19 (2):109–16. doi:10.1080/08958370601051677.
  • Marick, M. M. 2008. Bipolar diffusion charging of soot aggregates. Aerosol Sci. Technol. 42:247–54.
  • Mauer, G., R. Vaßen, and D. Stöver. 2011. Plasma and particle temperature measurements in thermal spray: Approaches and applications. J. Therm. Spray Tech. 20 (3):391–406. doi:10.1007/s11666-010-9603-z.
  • McMurry, P. H., and M. R. Stolzenburg. 1989. On the sensitivity of particle size to relative humidity for Los Angeles aerosols. Atmos. Environ. 23 (2):497–507. doi:10.1016/0004-6981(89)90593-3.
  • Oberdörster, G. 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74:1–8. doi:10.1007/s004200000185.
  • OECD. 2015. Harmonized tiered approach to measure and assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. Ser. Saf. Manuf. Nanomater. 55:JT03378848.
  • Ono-Ogasawara, M., F. Serita, and M. Takaya. 2009. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J. Nanopart. Res. 11 (7):1651–9. doi:10.1007/s11051-009-9703-1.
  • Pawlowski, L. 2008. The science and engineering of thermal spray coatings. 2nd ed., John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, England. doi:10.1002/9780470754085.
  • Peters, T. M., S. Elzey, R. Johnson, H. Park, V. H. Grassian, T. Maher, and P. O'Shaughnessy. 2008. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J. Occup. Environ. Hyg. 6 (2):73–81. doi:10.1080/15459620802590058.
  • Pietroiusti, A., H. Stockmann-Juvala, F. Lucaroni, and K. Savolainen. 2018. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 10:e1513., 1–21. doi:10.1002/wnan.1513.
  • Planche, M. P., R. Bolot, and C. Coddet. 2003. In-flight characteristics of plasma sprayed alumina particles: Measurements, modeling, and comparison. J. Therm. Spray Technol. 12 (1):101–11. doi:10.1361/105996303770348555.
  • Rader, D. J., and P. H. McMurry. 1986. Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J. Aerosol Sci. 17 (5):771–87. doi:10.1016/0021-8502(86)90031-5.
  • Salmatonidis, A., C. Ribalta, V. Sanfélix, S. Bezantakos, G. Biskos, A. Vulpoi, S. Simion, E. Monfort, and M. Viana. 2019. Workplace exposure to nanoparticles during thermal spraying of ceramic coatings. Ann. Work Expo. Health. 63 (1):91–106. doi:10.1093/annweh/wxy094.
  • Salmatonidis, A., M. Viana, N. Pérez, A. Alastuey, G. F. de la Fuente, L. A. Angurel, V. Sanfélix, and E. Monfort. 2018. Nanoparticle formation and emission during laser ablation of ceramic tiles. J. Aerosol Sci. 126:152–68. doi:10.1016/j.jaerosci.2018.09.006.
  • Schill, A. L., and L. C. Chosewood. 2013. The NIOSH total worker health program: An overview. J. Occup. Environ. Med. 55:10–3. doi:10.1097/JOM.0000000000000037.
  • Song, Y., X. Li, and X. Du. 2009. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J. 34 (3):559–67. doi:10.1183/09031936.00178308.
  • Swietlicki, E., H. C. Hansson, K. Hämeri, B. Svenningsson, A. Massling, G. Mcfiggans, P. H. Mcmurry, T. Petäjä, P. Tunved, M. Gysel, et al. 2008. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - A review. Tellus Ser. B Chem. Phys. Meteorol. 60 (3):432–69. doi:10.1111/j.1600-0889.2008.00350.x.
  • Tritscher, T., Z. Jurányi, M. Martin, R. Chirico, M. Gysel, M. F. Heringa, P. F. DeCarlo, B. Sierau, A. S. H. Prévôt, E. Weingartner, et al. 2011. Changes of hygroscopicity and morphology during ageing of diesel soot. Environ. Res. Lett. 6 (3):034026. doi:10.1088/1748-9326/6/3/034026.
  • van Broekhuizen, P. 2017. Applicability of provisional NRVs to PGNPs and FCNPs. Bureau KLB, Den Haag, The Netherlands. doi:10.13140/RG.2.2.18241.25445.
  • Viitanen, A. K., S. Uuksulainen, A. J. Koivisto, K. Hämeri, and T. Kauppinen. 2017. Workplace Measurements of Ultrafine Particles-A Literature Review. Ann. Work Expo. Heal., 61:749–58.
  • Voliotis, A., S. Bezantakos, M. Giamarelou, M. Valenti, P. Kumar, and G. Biskos. 2014. Nanoparticle emissions from traditional pottery manufacturing. Environ. Sci. Process. Impacts. 16 (6):1489–94. doi:10.1039/c3em00709j.
  • Weingartner, E., U. Baltensperger, and H. Burtscher. 1995. Growth and structural change of combustion aerosols at high relative humidity. Environ. Sci. Technol. 29 (12):2982–6. doi:10.1021/es00012a014.
  • World Health Organization. 2016. Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization, Geneva, Switzerland, 1–131. doi:9789241511353.
  • Zhang, M., L. Jian, P. Bin, M. Xing, J. Lou, L. Cong, and H. Zou. 2013. Workplace exposure to nanoparticles from gas metal arc welding process. J. Nanoparticle Res. 15:1–14. doi:10.1007/s11051-013-2016-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.