887
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Influence of ash-soot interactions on the reactivity of soot from a gasoline direct injection engine

ORCID Icon, , &
Pages 1373-1385 | Received 19 Nov 2019, Accepted 08 Jun 2020, Published online: 17 Jul 2020

References

  • An, Y., S. Teng, Y. Pei, J. Qin, X. Li, and H. Zhao. 2016. An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline. Fuel 164:160–71. doi:10.1016/j.fuel.2015.10.007.
  • Barone, T., J. Storey, A. Youngquist, and J. Szybist. 2012. An analysis of direct-injection spark ignition (DISI) soot morphology. Atmos. Environ. 49:268–74. doi:doi.org/10.1016/j.atmosenv.2011.11.047. doi:10.1016/j.atmosenv.2011.11.047.
  • Boehm, H. P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32 (5):759–69. doi:10.1016/0008-6223(94)90031-0.
  • Cain, J., P. Gassman, H. Wang, and A. Laskin. 2010. Micro-FTIR study of soot chemical composition - Evidence of aliphatic hydrocarbons on nascent soot surfaces. Phys. Chem. Chem. Phys. 12 (20):5206–18. doi:10.1039/b924344e.
  • Choi, S., and H. Seong. 2015. Oxidation characteristics of gasoline direct injection (GD) engine soot: Catalytic effects of ash and modified kinetic correlation. Combust. Flame 162 (6):2371–89. doi:10.1016/j.combustflame.2015.02.004.
  • Choi, S., and H. Seong. 2016. Lube oil-independent ash chemistry on soot oxidation reactivity in a gasoline direct injection engine. Combust. Flame 174:68–76. doi:10.1016/j.combustflame.2016.09.019.
  • Christian, V. R., F. Knopf, A. Jaschek, and W. Schindler. 1993. Eine neue Messmethodik der Bosch-Zahl mit erhohter Empfindlichkeit. Motortech Z 54:16–22.
  • Donnet, J. B. 1982. Structure and reactivity of carbons: From carbon black to carbon composites. Carbon 20 (4):267–82. doi:10.1016/0008-6223(82)90002-1.
  • Easter, J., S. Bohac, J. Hoard, A. Fiano, and K. Premchand. 2019. Evaluation of low mileage GPF filtration and regeneration as influenced by soot morphology, reactivity, and GPF loading. SAE 2019-01-0975. Detroit: SAE International. doi:10.4271/2019-01-0975.
  • Eichlseder, H., E. Baumann, P. Mueller, and S. Rubbert. 2000. Gasoline direct injection - A promising engine concept for future demands. SAE 2000-01-0248. Detroit: SAE International. doi:10.4271/2000-01-0248.
  • Farron, C., N. Mathias, D. Foster, M. Andrie, R. Krieger, P. Najt, K. Narayanaswamy, A. Solomon, and A. Zelenyuk. 2011. Particulate characteristics for varying engine operation in a gasoline spark ignited, direct injection engine. SAE 2011-01-1220. Detroit: SAE International. doi:10.4271/2011-01-1220.
  • Frenklach, M., and H. Wang. 1991. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23 (1):1559–66. doi:10.1016/S0082-0784(06)80426-1.
  • Gaddam, C., R. Vander Wal, S. Chen, A. Yezerets, and K. Kamasamudram. 2016. Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure. Carbon 98:545–56. doi:10.1016/j.carbon.2015.11.035.
  • Harris, S., and M. Maricq. 2001. Signature size distributions for diesel and gasoline engine exhaust particulate matter. J. Aerosol Sci. 32 (6):749–64. doi:10.1016/S0021-8502(00)00111-7.
  • He, X., A. Ratcliff, and B. Zigler. 2012. Effects of gasoline direct injection engine operating parameters on particle number emissions. Energy Fuels 26 (4):2014–27. doi:10.1021/ef201917p.
  • Ishiguro, T., N. Suzuki, Y. Fujitani, and H. Morimoto. 1991. Microstructural changes of diesel soot during oxidation. Combust. Flame 85 (1-2):1–6. doi:10.1016/0010-2180(91)90173-9.
  • Johnson, T. V. 2014. Review of emerging trends on gasoline emissions control. Paper presented at the 3rd International Conference Advanced Emission Control Concepts for Gasoline Engines, Dusseldorf, May 2014.
  • Kamp, C. J., A. Sappok, Y. Wang, W. Bryk, A. Rubin, and V. Wong. 2014. Direct measurements of soot/ash affinity in the diesel particulate filter by atomic force microscopy and implications for ash accumulation and DPF degredation. SAE Int. J. Fuels Lubr. 7 (1):307–16. doi:10.4271/2014-01-1486.
  • Keifer, J. R., M. Novicky, M. S. Akhter, A. R. Chughtai, and D. M. Smith. 1981. The nature and reactivity of the elemental carbon (soot) surface as revealed by the Fourier transformed infrared (FTIR) spectroscopy. Int. Soc. Opt. Photon. 289:184–8.
  • Liati, A., S. Schreiber, P. Dimopoulos, Y. Arroyo, R. Dasilva, and A. Spiteri. 2016. Electron microscope characterization of soot particulate matter emitted by modern direct injection gasoline engines. Combust. Flame 166:307–15. doi:10.1016/j.combustflame.2016.01.031.
  • Liu, X., T. Chanko, C. Lambert, and M. Maricq. 2018. Gasoline particulate filter efficiency and backpressure at very low mileage. SAE 2018-01-1259. Detroit: SAE International. doi:10.4271/2018-01-1259.
  • Mathis, U., M. Mohr, and A. Forss. 2005. Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures. Atmos. Environ. 39 (1):107–17. doi:10.1016/j.atmosenv.2004.09.029.
  • Miyamoto, N., Z. Hou, and H. Ogawa. 1988. Catalytic effects of metallic fuel additives on oxidation characteristics of trapped diesel soot. SAE 1988-09-01. Detroit: SAE International. doi:10.4271/881224.
  • Miyashita, K., Y. Fukuda, Y. Shiozaki, K. Kondo, T. Aizawa, D. Yoshikawa, D. Tanaka, and A. Teraji. 2015. TEM analysis of soot particles sampled from gasoline direction injection engine exhaust at different fuel injection timings. SAE 2015-01-1872. Detroit: SAE International. doi:10.4271/2015-01-1872.
  • Neeft, J., M. Makkee, and J. Moulijn. 1996a. Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Chem. Eng. 2 (64):295–302.
  • Neeft, J., M. Makkee, and J. Moulijn. 1996b. Metal oxides as catalysts for the oxidation of soot. Chem. Eng. J. Biochem. Eng. J. 64 (2):295–302. doi:10.1016/S0923-0467(96)03138-7.
  • Northrop, W., S. Bohac, J. Chin, and D. Assanis. 2011. Comparison of filter smoke number and elemental carbon mass from partially premixed low temperature combustion in a direct-injection diesel engine. J. Eng. Gas Turbines Power 133 (10):102804-(1–6). doi:10.1115/1.4002918.
  • Palmer, H., and C. Cullis. 1965. Chemistry and physics of carbon. Dekker (Marcel Dekker) 1:205.
  • Sappok, A., I. Govani, C. Kamp, Y. Wang, and V. Wong. 2013. In-situ optical analysis of ash formation and transport in diesel particulate filters during active and passive DPF regeneration processes. SAE 2013-01-0519. Detroit: SAE International. doi:10.4271/2013-01-0519.
  • Seong, H., and A. Boehman. 2011. Impact of intake oxygen enrichment on oxidative reactivity and properties of diesel soot. Energy Fuels 25 (2):602–16. doi:10.1021.
  • Seong, H., K. Lee, and S. Choi. 2013. Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine. SAE 2013-01-2574. Detroit: SAE International. doi:10.4271/2013-01-2574.
  • Song, J., M. Alam, A. Boehman, and U. Kim. 2006. Examination of the oxidation behaviour of biodiesel soot. Combust. Flame 146 (4):589–604. doi:10.1016/j.combustflame.2006.06.010.
  • Stanmore, B., J. Brilhac, and P. Gilot. 2001. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 39 (15):2247–68. doi:10.1016/S0008-6223(01)00109-9.
  • Strzelec, A., R. Vander Wal, S. Lewis, T. Toops, and C. Daw. 2017. Nanostructure and burning mode of light-dity diesel particulate with conventional diesel, biodiesel and intermediate blends. Int. J. Engine Res. 18 (5-6):520–31. doi:10.1177/1468087416674414.
  • Su, J., W. Lin, J. Sterniak, M. Xu, and S. Bohac. 2014. Particulate matter emission comparison of spark ignition direct injection (SIDI) and port fuel injection (PFI) operation of a boosted gasoline engine. J. Eng. Gas Turbines Power 136 (9)0:91513. doi:10.1115/1.4027274.
  • Sun, C. 2017. Nanostructure and reactivity of soot produced from partially premixed charge compression ignition (PCCI) combustion and post injection. PhD Thesis, University of Michigan.
  • Szybist, J., A. Youngquist, T. Barone, J. Storey, W. Moore, M. Foster, and K. Confer. 2011. Ethanol blends and engine operating strategy effects on light-duty spark-ignition engine particle emissions. Energy Fuels 25 (11):4977–85. doi:dx.doi.org/10.1021/ef201127y. doi:10.1021/ef201127y.
  • Vander Wal, R., and A. Tomasek. 2003. Soot oxidation dependence upon initial nanostructure. Combust. Flame 134 (1-2):1–9. doi:10.1016/S0010-2180(03)00084-1.
  • Zhu, J., K. Lee, A. Yozgatligil, and M. Choi. 2005. Effects of engine operating conditions on morphology, microstructure and fractal geometry of light-duty diesel engine particulates. Proc. Combust. Inst. 30 (2):2781–9. doi:10.1016/j.proci.2004.08.232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.