988
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of methods of functional group analysis using results from laboratory and field aerosol measurements

, , &
Pages 1042-1058 | Received 09 Sep 2020, Accepted 06 Apr 2021, Published online: 07 May 2021

References

  • Aimanant, S., and P. J. Ziemann. 2013a. Development of spectrophotometric methods for the analysis of functional groups in oxidized organic aerosol. Aerosol Sci. Technol. 47 (6):581–91. doi: 10.1080/02786826.2013.773579.
  • Aimanant, S., and P. J. Ziemann. 2013b. Chemical mechanisms of aging of aerosol formed from the reaction of n-pentadecane with OH radicals in the presence of NOx. Aerosol Sci. Technol. 47 (9):979–90. doi: 10.1080/02786826.2013.804621.
  • Algrim, L. B., and P. J. Ziemann. 2016. Effect of the keto group on yields and composition of organic aerosol formed from OH radical-initiated reactions of ketones in the presence of NOx. J. Phys. Chem. A 120:6978–89. doi: 10.1021/acs.jpca.6b05839.
  • Atkinson, R., and J. Arey. 2003. Atmospheric degradation of volatile organic compounds. Chem. Rev. 103:4605–38. doi: 10.1021/cr0206420.
  • Atkinson, R., C. N. Plum, W. P. L. Carter, A. M. Winer, and J. N. Pitts Jr. 1984. Rate constants for the gas-phase reactions of nitrate radicals with a series of organics in air at 298 ± 1 K. J. Phys. Chem. 88 (6):1210–5. doi: 10.1021/j150650a039.
  • Ayres, B. R., H. M. Allen, D. C. Draper, S. S. Brown, R. J. Wild, J. L. Jimenez, D. A. Day, P. Campuzano-Jost, W. Hu, J. de Gouw, et al. 2015. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chem. Phys. 15 (23):13377–92. doi: 10.5194/acp-15-13377-2015.
  • Banerjee, D. K., and C. C. Budke. 1964. Spectrophotometric determination of traces of peroxides in organic solvents. Anal. Chem. 36 (4):792–6. doi: 10.1021/ac60210a027.
  • Brooks, S. D., M. E. Wise, M. Cushing, and M. A. Tolbert. 2002. Deliquescence behavior of organic/ammonium sulfate aerosol. Geophys. Res. Lett. 29 (19):23-1–23-4. doi: 10.1029/2002GL014733.
  • Budisulistiorini, S. H., X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, et al. 2015. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmospheric Chem. Phys. 15 (15):8871–88. doi: 10.5194/acp-15-8871-2015.
  • Carlton, A. M., J. de Gouw, J. L. Jimenez, J. L. Ambrose, A. R. Attwood, S. Brown, K. R. Baker, C. A. Brock, R. C. Cohen, S. Edgerton, et al. 2018. The Southeast Atmosphere Studies (SAS): Coordinated investigation and discovery to answer critical questions about fundamental atmospheric processes. Bull. Am. Meteorol. Soc. 99 (3):547–67. doi: 10.1175/BAMS-D-16-0048.1.
  • Claflin, M. S., J. E. Krechmer, W. Hu, J. L. Jimenez, and P. J. Ziemann. 2018. Functional group composition of secondary organic aerosol formed from ozonolysis of α-pinene under high VOC and autoxidation conditions. ACS Earth Space Chem. 2 (11):1196–210. doi: 10.1021/acsearthspacechem.8b00117.
  • Claflin, M. S., and P. J. Ziemann. 2018. Identification and quantitation of aerosol products of the reaction of β-pinene with NO3 radicals and implications for gas- and particle-phase reaction mechanisms. J. Phys. Chem. A 122:3640–52. doi: 10.1021/acs.jpca.8b00692.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler. 1998. A thermodynamic model of the system H+ - NH4+ - Na+ - SO42- - NO3- - Cl- - H2O at 298.15 K. J. Phys. Chem. A. 102 (12):2155–71. doi: 10.1021/jp973043j.
  • Coury, C., and A. M. Dillner. 2007. A Method to quantify organic functional groups and inorganic compounds in ambient aerosols using attenuated total reflectance FTIR spectroscopy and multivariate chemometric techniques. Atmospheric Environ. 41 (40):9309–23. doi: 10.1016/j.atmosenv.2008.03.026.
  • Coury, C., and A. M. Dillner. 2009. ATR-FTIR Characterization of organic functional groups and inorganic ions in ambient aerosols at a rural site. Atmospheric Environ. 43 (4):940–8. doi: 10.1016/j.atmosenv.2008.10.056.
  • Day, D. A., S. Liu, L. M. Russell, and P. J. Ziemann. 2010. Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmospheric Environ. 44 (16):1970–9. doi: 10.1016/j.atmosenv.2010.02.045.
  • Deming, B., D. Pagonis, X. Liu, D. Day, R. Talukdar, J. Krechmer, J. A. de Gouw, J. L. Jimenez, and P. J. Ziemann. 2019. Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas-wall interactions. Atmos. Meas. Tech. 12 (6):3453–61. doi: 10.5194/amt-12-3453-2019.
  • Docherty, K. S., W. Wu, Y. B. Lim, and P. J. Ziemann. 2005. Contributions of organic peroxides to secondary organic aerosol formed from reactions of monoterpenes with O3. Environ. Sci. Technol. 39:4049–59. doi: 10.1021/es050228s.
  • Eddingsaas, N. C., C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg. 2012. α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments. Atmospheric Chem. Phys. 12 (16):7413–27. doi: 10.5194/acp-12-7413-2012.
  • Gao, Y., S. B. Chen, and L. E. Yu. 2006. Efflorescence relative humidity of ammonium sulfate particles. J. Phys. Chem. A 110:7602–8. doi: 10.1021/jp057574g.
  • Guenther, A., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang. 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5 (6):1471–92. doi: 10.5194/gmd-5-1471-2012.
  • Guo, H., L. Xu, A. Bougiatioti, K. M. Cerully, S. L. Capps, J. R. Hite, A. G. Carlton, S.-H. Lee, M. H. Bergin, N. L. Ng, et al. 2015. Fine-particle water and pH in the southeastern United States. Atmospheric Chem. Phys. 15 (9):5211–28. doi: 10.5194/acp-15-5211-2015.
  • Hallquist, M., J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, et al. 2009. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmospheric Chem. Phys. 9 (14):5155–236. doi: 10.5194/acp-9-5155-2009.
  • Hoffmann, T., R. J. Huang, and M. Kalberer. 2011. Atmospheric analytical chemistry. Anal. Chem 83:4649–64. doi: 10.1021/ac2010718.
  • Hu, K. S., A. I. Darer, and M. J. Elrod. 2011. Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates. Atmospheric Chem. Phys. 11 (16):8307–20. doi: 10.5194/acp-11-8307-2011.
  • Jacobs, M. I., W. J. Burke, and M. J. Elrod. 2014. Kinetics of the reactions of isoprene-derived hydroxynitrates: Gas phase epoxide formation and solution phase hydrolysis. Atmospheric Chem. Phys. 14 (17):8933–46. doi: 10.5194/acp-14-8933-2014.
  • Jacobson, M. C., H. C. Hansson, K. J. Noone, and R. J. Charlson. 2000. Organic atmospheric aerosols: Review and state of the science. Rev. Geophys. 38 (2):267–94. doi: 10.1029/1998RG000045.
  • Kaiser, J., K. Skog, K. Baumann, S. Bertman, S. Brown, W. Brune, J. Crounse, J. de Gouw, E. Edgerton, P. Feiner, et al. 2016. Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmospheric Chem. Phys. 16 (14):9349–59. doi: 10.5194/acp-16-9349-2016.
  • Krapf, M., I. E. Haddad, E. A. Bruns, U. Molteni, K. R. Daellenbach, A. S. H. Prevot, U. Baltensperger, and J. Dommen. 2016. Labile peroxides in secondary organic aerosol. Chem 1 (4):603–16. doi: 10.1016/j.chempr.2016.09.007.
  • Kroll, J. H., and J. H. Seinfeld. 2008. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environ. 42 (16):3593–624. doi: 10.1016/j.atmosenv.2008.01.003.
  • Kuwata, M., S. R. Zorn, and S. T. Martin. 2012. Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen. Environ. Sci. Technol. 46 (2):787–94. doi: 10.1021/es202525q.
  • Lee, B. H., C. Mohr, F. D. Lopez-Hilfiker, A. Lutz, M. Hallquist, L. Lee, P. Romer, R. C. Cohen, S. Iyer, T. Kurtén, et al. 2015. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proc. Natl. Acad. Sci. 113:1516–21. doi: 10.1073/pnas.1508108113.
  • Lim, Y. B., and P. J. Ziemann. 2009. Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx. Aerosol Sci. Technol. 43 (6):604–19. doi: 10.1080/02786820902802567.
  • Liu, J., L. M. Russell, A. K. Y. Lee, K. A. McKinney, J. D. Surratt, and P. J. Ziemann. 2017. Observations evidence for pollution-influenced selective uptake contributing to biogenic secondary organic aerosols in the southeast U.S. Geophys. Res. Lett. 44 (15):8056–64. doi: 10.1002/2017GL074665.
  • Liu, J., L. M. Russell, G. Ruggeri, S. Takahama, M. S. Claflin, P. J. Ziemann, H. O. T. Pye, B. N. Murphy, L. Xu, N. L. Ng, et al. 2018. Regional similarities and NOx-related increases in biogenic secondary organic aerosol in summertime southeastern U.S. J. Geophys. Res. Atmos. 123:10620–36. doi: 10.1029/2018JD028491.
  • Maria, S. F., L. M. Russell, B. J. Turpin, and R. J. Porcja. 2002. FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean. Atmospheric Environ. 36 (33):5185–96. doi: 10.1016/S1352-2310(02)00654-4.
  • Massoli, P., H. Stark, M. R. Canagaratna, J. E. Krechmer, L. Xu, N. L. Ng, R. L. Mauldin, C. Yan, J. Kimmel, P. K. Misztal, et al. 2018. Ambient measurements of highly oxidized gas-phase molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013. ACS Earth Space Chem. 2 (7):653–72. doi: 10.1021/acsearthspacechem.8b00028.
  • Matsunaga, A., and P. J. Ziemann. 2009. Yields of β-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx. J. Phys. Chem. A. 113 (3):599–606. doi: 10.1021/jp807764d.
  • Orlando, J. J., and G. S. Tyndall. 2012. Laboratory studies of organic peroxy radical chemistry: An overview with emphasis on recent issues of atmospheric significance. Chem. Soc. Rev. 41:6294–317. doi: 10.1039/C2CS35166H.
  • Pagonis, D., and P. J. Ziemann. 2018. Chemistry of hydroperoxycarbonyls in secondary organic aerosol. Aerosol Sci. Technol. 52 (10):1178–93. doi: 10.1080/02786826.2018.1511046.
  • Pankow, J. F., and W. E. Asher. 2008. SIMPOL.1: A simple group contribution methods for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmospheric Chem. Phys. 8 (10):2773–96. doi: 10.5194/acp-8-2773-2008.
  • Pöschl, U. 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44:7520–40. 10.1002/anie.200501122.
  • Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann. 2007. Cloud droplet activation of secondary organic aerosol. J. Geophys. Res. 112:D10223. doi: 10.1029/2006JD007963.
  • Ranney, A. P., and P. J. Ziemann. 2016a. Microscale spectrophotometric methods for quantification of functional groups in oxidized organic aerosol. Aerosol Sci. Technol. 50 (9):881–92. doi: 10.1080/02786826.2016.1201197.
  • Ranney, A. P., and P. J. Ziemann. 2016b. Kinetics of acid-catalyzed dehydration of cyclic hemiacetals in aerosol particles in equilibrium with nitric acid vapor. J. Phys. Chem. A. 120 (16):2561–8. doi: 10.1021/acs.jpca.6b01402.
  • Rattanavaraha, W., K. Chu, S. H. Budisulistiorini, M. Riva, Y. H. Lin, E. S. Edgerton, K. Baumann, S. L. Shaw, H. Guo, L. King, et al. 2016. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study. Atmospheric Chem. Phys 16:4897–914. doi: 10.5194/acp-16-4897-2016.
  • Reggente, M., A. M. Dillner, and S. Takahama. 2019. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: systematic intercomparison of calibration methods for US measurement network samples. Atmos. Meas. Tech. 12 (4):2287–312. doi: 10.5194/amt-12-2287-2019.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun 9:956. doi: 10.1038/s41467-018-03027-z.
  • Russell, L. M. 2003. Aerosol organic-mass-to-organic-carbon ratio measurements. Environ. Sci. Technol. 37:2982–7. doi: 10.1021/es026123w.
  • Russell, L. M., R. Bahadur, L. N. Hawkins, J. Allan, D. Baumgardner, P. K. Quinn, and T. S. Bates. 2009. Organic aerosol characterization by complementary measurements of chemical bonds and molecular fragments. Atmospheric Environ. 43 (38):6100–5. doi: 10.1016/j.atmosenv.2009.09.036.
  • Russell, L. M., R. Bahadur, and P. J. Ziemann. 2011. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. Proc. Natl. Acad. Sci 108:3516–21. doi: 10.1073/pnas.1006461108.
  • Russell, L. M., S. Takahama, S. Liu, S. L. N. Hawkins, D. S. Covert, P. K. Quinn, and T. S. Bates. 2009. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006. J. Geophys. Res. Atmos. 114:D00F05. doi: 10.1029/2008JD011275.
  • Shreve, O. D., M. R. Heether, H. B. Knight, and D. Swern. 1951. Infrared absorption spectra of some hydroperoxides, peroxides, and related compounds. Anal. Chem. 23 (2):282–5. doi: 10.1021/ac60050a015.
  • Surratt, J. D., S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrandt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, et al. 2006. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A 110:9665–90. doi: 10.1021/jp061734m.
  • Takahama, S., A. M. Dillner, A. T. Weakley, M. Reggente, C. Bürki, M. Lbadaoui-Darvas, B. Debus, A. Kuzmiakova, and A. S. Wexler. 2019. Atmospheric particulate matter characterization by Fourier Transform Infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks. Atmos. Meas. Tech. 12 (1):525–67. doi: 10.5194/amt-12-525-2019.
  • Takahama, S., A. Johnson, and L. M. Russell. 2013. Quantification of carboxylic and carbonyl functional groups in organic aerosol infrared absorbance spectra. Aerosol Sci. Technol. 47 (3):310–25. doi: 10.1080/02786826.2012.752065.
  • Taylor, W. D., T. D. Allston, M. J. Moscato, G. B. Fazekas, R. Kozlowski, and G. A. Takacs. 1980. Atmospheric Photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate. Int. J. Chem. Kinet. 12 (4):231–40. doi: 10.1002/kin.550120404.
  • Wexler, A. S., and S. L. Clegg. 2002. Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42-, NO3-, Cl-, Br-, and H2O. J. Geophys. Res. 107 (D14):14-1–14-4. doi: 10.1029/2001JD000451.
  • Xu, L., H. Guo, C. Boyd, M. Klein, A. Bougiatioti, K. Cerully, J. R. Hite, G. Isaacman-VanWertz, N. Kreisberg, C. Knote, et al. 2015b. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. 112:37–42. doi: 10.1073/pnas.1417609112.
  • Xu, L., S. Suresh, H. Guo, R. J. Weber, and N. L. Ng. 2015a. Aerosol characterization over the southeastern united states using high-resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chem. Phys. 15 (13):7307–36. doi: 10.5194/acp-15-7307-2015.
  • Yu, J., D. R. Cocker, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld. 1999. Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. J. Atmos. Chem. 34 (2):207–58. doi: 10.1023/A:1006254930583.
  • Ziemann, P. J., and R. Atkinson. 2012. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 41:6582–605. doi: 10.1039/C2CS35122F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.