551
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Size-resolved refractive index of scattering aerosols in urban Beijing: A seasonal comparison

ORCID Icon, , , , , , , & show all
Pages 1070-1083 | Received 19 Dec 2020, Accepted 26 Apr 2021, Published online: 24 May 2021

References

  • Barkey, B., S. E. Paulson, and A. Chung. 2007. Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index. Aerosol. Sci. Tech. 41 (8):751–60. doi: 10.1080/02786820701432640.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol. Sci. Technol. 40 (1):27–67. doi: 10.1080/02786820500421521.
  • Cai, Y., D. C. Montague, and T. Deshler. 2011. Comparison of measured and calculated scattering from surface aerosols with an average, a size-dependent, and a time-dependent refractive index. J. Geophys. Res. 116 (D2):D02202. doi: 10.1029/2010JD014607.
  • Canonaco, F., J. G. Slowik, U. Baltensperger, and A. S. H. Prévôt. 2015. Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis. Atmos. Chem. Phys. 15 (12):6993–7002. doi: 10.5194/acp-15-6993-2015.
  • Cross, E. S., J. G. Slowik, P. Davidovits, J. D. Allan, D. R. Worsnop, J. T. Jayne, D. K. Lewis, M. Canagaratna, and T. B. Onasch. 2007. Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry. Aerosol. Sci. Technol. 41 (4):343–59. doi: 10.1080/02786820701199736.
  • Dubovik, O., and D. King. 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res. 105 (D16):20673–96. doi: 10.1029/2000JD900282.
  • Eidhammer, T., D. C. Montague, and T. Deshler. 2008. Determination of index of refraction and size of supermicrometer particles from light scattering measurements at two angles. J. Geophys. Res. 113 (D16):D16206. doi: 10.1029/2007JD009607.
  • Espinosa, W. R., J. V. Martins, L. A. Remer, O. Dubovik, T. Lapyonok, D. Fuertes, A. Puthukkudy, D. Orozco, L. Ziemba, K. L. Thornhill, et al. 2019. Retrievals of aerosol size distribution, spherical fraction and complex refractive index from airborne in situ angular light scattering and absorption measurements. J. Geophys. Res. Atmos. 124 (14):7997–8024. doi: 10.1029/2018JD030009.
  • Gao, R. S., J. P. Schwarz, K. K. Kelly, D. W. Fahey, L. A. Watts, T. L. Thompson, J. R. Spackman, J. G. Slowik, E. S. Cross, J.-H. Han, et al. 2007. A novel method for estimating lights scattering properties of soot aerosols using a modified single particle soot photometer. Aerosol. Sci. Technol. 41 (2):125–35. doi: 10.1080/02786820601118398.
  • Hagen, D. E., and D. J. Alofs. 1983. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol. Sci. Technol. 2 (4):465–75. doi: 10.1080/02786828308958650.
  • Han, Z. W., J. W. Li, X. A. Xia, and R. J. Zhang. 2012. Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ. 54:688–99. doi: 10.1016/j.atmosenv.2012.01.041.
  • Hand, J. L., and S. M. Kreidenweis. 2002. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Tech. 36 (10):1012–26. doi: 10.1080/02786820290092276.
  • Hu, W. W., M. Hu, W. Hu, J. L. Jimenez, B. Yuan, W. T. Chen, M. Wang, Y. S. Wu, C. Chen, Z. B. Wang, et al. 2016. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. J. Geophys. Res. Atmos. 121 (4):1955–77. doi: 10.1002/2015JD024020.
  • Hu, W., M. Hu, W.-W. Hu, J. Zheng, C. Chen, Y. S. Wu, and S. Guo. 2017. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmos. Chem. Phys. 17 (16):9979–10000. doi: 10.5194/acp-17-9979-2017.
  • Hu, M., J. F. Peng, K. Sun, D. L. Yue, S. Guo, A. Wiedensohler, and Z. J. Wu. 2012. Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing. Environ. Sci. Technol. 46:9941–7. doi: 10.1021/es204073t.
  • IPCC. 2013. Summary for policymakers. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental panel on climate change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley. Cambridge, United Kingdom; New York, NY: Cambridge University Press.
  • Liao, H., J. H. Seinfeld, P. J. Adams, and L. J. Mickley. 2004. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J. Geophys. Res. 109 (D16):D16207. doi: 10.1029/2003JD004456.
  • Li, H., J. Cheng, Q. Zhang, B. Zheng, Y. Zhang, G. Zheng, and K. He. 2019. Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions. Atmos. Chem. Phys. 19 (17):11485–99. doi: 10.5194/acp-19-11485-2019.
  • Li, J. W., Z. W. Han, X. H. Yao, Z. X. Xie, and S. C. Tan. 2019. The distributions and direct radiative effects of marine aerosols over East Asia in springtime. Sci. Tot. Environ. 651:1913–25. doi: 10.1016/j.scitotenv.2018.09.368.
  • Liu, P. F., N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin. 2015. Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene. Atmos. Chem. Phys. 15 (3):1435–46. doi: 10.5194/acp-15-1435-2015.
  • Liu, Y., and P. H. Daum. 2000. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters? J. Aerosol. Sci. 31 (8):945–57. doi: 10.1016/S0021-8502(99)00573-X.
  • Liu, Y., and P. H. Daum. 2008. Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols. J. Aerosol. Sci. 39 (11):974–86. doi: 10.1016/j.jaerosci.2008.06.006.
  • Liu, H., X. L. Pan, Y. F. Wu, D. S. Ji, Y. Tian, X. S. Chen, and Z. F. Wang. 2020. Size-resolved mixing state and optical properties of black carbon at an urban site in Beijing. Sci. Tot. Environ. 749:141523. doi: 10.1016/j.scitotenv.2020.141523.
  • Li, Z. Q., H. Xu, K. T. Li, D. H. Li, Y. S. Xie, L. Li, Y. Zhang, X. F. Gu, W. Zhao, Q. J. Tian, et al. 2018. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun–Sky Radiometer Observation Network (SONET) measurements. B. Am. Meteorol. Soc. 99 (4):739–55. doi: 10.1175/BAMS-D-17-0133.1.
  • Ma, Q., Y. Wu, D. Zhang, X. Wang, Y. Xia, X. Liu, P. Tian, Z. Han, X. Xia, Y. Wang, et al. 2017. Roles of regional transport and heterogeneous reactions in the PM2:5 increase during winter haze episodes in Beijing. Sci. Total Environ. 599–600:246–53. doi: 10.1016/j.scitotenv.2017.04.193.
  • Moffet, R. C., and K. A. Prather. 2005. Extending ATOFMS measurements to include refractive index and density. Anal. Chem. 77:6535–41. doi: 10.1021/ac0503097.
  • Moffet, R. C., X. Y. Qin, T. Rebotier, H. Furutani, and K. A. Prather. 2008. Chemically segregated optical and microphysical properties of ambient aerosols measured in a single-particle mass spectrometer. J. Geophys. Res. 113 (D12):D12213. doi: 10.1029/2007JD009393.
  • Moise, T., J. M. Flores, and Y. Rudich. 2015. Optical properties of secondary organic aerosols and their changes by chemical processes. Chem. Rev. 115:4400–39. doi: 10.1021/cr5005259.
  • Moteki, N., and Y. Kondo. 2007. Effects of mixing state on black carbon measurements by laser-induced incandescence. Aerosol Sci. Technol. 41 (4):398–417. doi: 10.1080/02786820701199728.
  • Moteki, N., and Y. Kondo. 2008. Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam. J. Aerosol. Sci. 39 (4):348–64. doi: 10.1016/j.jaerosci.2007.12.002.
  • Moteki, N., Y. Kondo, and S. Nakamura. 2010. Method to measure refractive indices of small nonspherical particles: application to black carbon particles. J. Aerosol. Sci. 41 (5):513–21. doi: 10.1016/j.jaerosci.2010.02.013.
  • Ren, Y. T., H. Qi, Q. Chen, L. M. Ruan, and H. P. Tan. 2015. Simultaneous retrieval of the complex refractive index and particle size distribution. Opt. Express 23:19328–37. doi: 10.1364/OE.23.019328.
  • Schwarz, J. P., R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbeheshti, D. G. Baumgardner, G. L. Kok, et al. 2006. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. 111 (D16):D16207. doi: 10.1029/2006JD007076.
  • Seinfeld, J. H., and S. N. Pandis. 2006. Atmospheric chemistry and physics: from air pollution to climate change. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.
  • Sorooshian, A., S. Hersey, F. J. Brechtel, A. Corless, R. C. Flagan, and J. H. Seinfeld. 2008. Rapid, size-resolved aerosol hygroscopic growth measurements: differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). Aerosol. Sci. Tech. 42 (6):445–64. doi: 10.1080/02786820802178506.
  • Sun, Y. L., Z. F. Wang, W. Du, Q. Zhang, Q. Q. Wang, P. Q. Fu, X. L. Pan, J. Li, J. Jayne, and D. R. Worsnop. 2015. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmos. Chem. Phys. 15 (17):10149–65. doi: 10.5194/acp-15-10149-2015.
  • Valenzuela, A., J. P. Reid, B. R. Bzdek, and A. J. Orr-Ewing. 2018. Accuracy required in measurements of refractive index and hygroscopic response to reduce uncertainties in estimates of aerosol radiative forcing efficiency. J. Geophys. Res. Atmos. 123 (12):6469–86. doi: 10.1029/2018JD028365.
  • Vratolis, S., P. Fetfatzis, A. Argyrouli, A. Papayannis, D. Müller, I. Veselovskii, A. Bougiatioti, A. Nenes, E. Remoundaki, E. Diapouli, et al. 2018. A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols. J. Aerosol. Sci. 117:54–62. doi: 10.1016/j.jaerosci.2017.12.013.
  • Wang, W., and M. J. Rood. 2008. Real refractive index: Dependence on relative humidity and solute composition with relevancy to atmospheric aerosol particles. J. Geophys. Res. 113 (D23):D23305. doi: 10.1029/2008JD010165.
  • Wang, G. H., R. Y. Zhang, M. E. Gomez, L. X. Yang, M. L. Zamora, M. Hu, Y. Lin, J. F. Peng, S. Guo, J. J. Meng, et al. 2016. Persistent sulfate formation from London Fog to Chinese haze. P. Natl. Acad. Sci. USA 113:13630–5. doi: 10.1073/pnas.1616540113.
  • Wu, X. Q., J. Liu, Y. F. Wu, X. Wang, X. W. Yu, J. S. Shi, J. R. Bi, Z. W. Huang, T. Zhou, and R. J. Zhang. 2018. Aerosol optical absorption coefficients at a rural site in Northwest China: The great contribution of dust particles. Atmos. Environ 189:145–52. doi: 10.1016/j.atmosenv.2018.07.002.
  • Wu, Y. F., Y. J. Xia, R. J. Huang, Z. Z. Deng, P. Tian, X. A. Xia, and R. J. Zhang. 2019. A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmos. Meas. Tech. 12 (8):4347–59. doi: 10.5194/amt-12-4347-2019.
  • Zarzana, K. J., C. D. Cappa, and M. A. Tolbert. 2014. Sensitivity of aerosol refractive index retrievals using optical spectroscopy. Aerosol Sci. Tech. 48 (11):1133–44. doi: 10.1080/02786826.2014.963498.
  • Zhang, G. H., X. H. Bi, B. X. Han, N. Qiu, S. H. Dai, X. M. Wang, G. Y. Sheng, and J. M. Fu. 2016. Measurement of aerosol effective density by single particle mass spectrometry. Sci. China Earth Sci. 59 (2):320–7. doi: 10.1007/s11430-015-5146-y.
  • Zhang, R., J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, Y. Zhao, et al. 2013. Chemical characterization and source apportionment ofPM2.5 in Beijing: seasonal perspective. Atmos. Chem. Phys. 13 (14):7053–74. doi: 10.5194/acp-13-7053-2013.
  • Zhang, Y., H. Su, N. Ma, G. Li, S. Kecorius, Z. Wang, M. Hu, T. Zhu, K. He, A. Wiedensohler, et al. 2018. Sizing of ambient particles from a Single-Particle Soot Photometer Measurement to retrieve mixing state of black carbon at a regional site of the North China Plain. J. Geophys. Res.-Atmos 123:12778–95. doi: 10.1029/2018JD028810.
  • Zhao, G., T. Tan, W. Zhao, S. Guo, P. Tian, and C. Zhao. 2019. A new parameterization scheme for the real part of the ambient urban aerosol refractive index. Atmos. Chem. Phys. 19 (20):12875–85. doi: 10.5194/acp-19-12875-2019.
  • Zhao, G., W. Zhao, and C. Zhao. 2019. Method to measure the size-resolved real part of aerosol refractive index using differential mobility analyzer in tandem with single- particle soot photometer. Atmos. Meas. Tech. 12 (7):3541–50. doi: 10.5194/amt-12-3541-2019.
  • Zhou, W., M. Gao, Y. He, Q. Q. Wang, C. H. Xie, W. Q. Xu, J. Zhao, W. Du, Y. M. Qiu, L. Lei, et al. 2019. Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environ. Pollut. 255:113345. doi: 10.1016/j.envpol.2019.113345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.