1,682
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Droplet and particle methods to investigate turbulent particle laden jets

ORCID Icon, , , , &
Pages 1359-1377 | Received 05 May 2021, Accepted 06 Jul 2021, Published online: 26 Aug 2021

References

  • Bahl, P., C. Doolan, C. De Silva, A. A. Chughtai, L. Bourouiba, and C. R. MacIntyre. 2020. Airborne or droplet precautions for health workers treating COVID-19? Clin. Infect. Dis. 24 (17):1639–41. doi:10.1093/infdis/jiaa189
  • Balachandar, S., and J. K. Eaton. 2010. Turbulent dispersed multiphase flow. Ann. Rev. Fluid Mech. 42 (1):111–33. doi:10.1146/annurev.fluid.010908.165243.
  • Bolster, D. T., and P. F. Linden. 2009. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments. Indoor Air. 19 (2):130–44. doi:10.1111/j.1600-0668.2008.00569.x.
  • Bordoloi, A. D., C. C. K. Lai, L. Clark, G. V. Carrillo, and E. Variano. 2020. Turbulence statistics in a negatively buoyant multiphase plume. J. Fluid Mech. 896:A19. doi:10.1017/jfm.2020.326.
  • Bourouiba, L. 2016. A Sneeze. N. Engl. J. Med. 375 (8):e15. doi:10.1056/NEJMicm1501197.
  • Bourouiba, L., E. Dehandschoewercker, and J. W. Bush. 2014. Violent expiratory events: On coughing and sneezing. J. Fluid Mech. 745:537–63. doi:10.1017/jfm.2014.88.
  • Chao, C. Y., and M. P. Wan. 2006. A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airows using a multiphase approach. Indoor Air 16 (4):296–312. doi:10.1111/j.1600-0668.2006.00426.x.
  • Chu, D. K., E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J. Schünemann, D. K. Chu, E. A. Akl, A. El-Harakeh, A. Bognanni, et al. 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 395 (10242):1973–87. doi:10.1016/S0140-6736(20)31142-9.
  • Einstein, H. A., and H. W. Shen. 1964. A study on meandering in straight alluvial channels. J. Geophys. Res. 69 (24):5239–47. doi:10.1029/JZ069i024p05239.
  • Elghobashi, S. 1994. On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4):309–29. doi:10.1007/BF00936835.
  • Elgobashi, S. 2006. An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow, 3–10. Springer.
  • Guazzelli, E., and J. F. Morris. 2011. A physical introduction to suspension dynamics. Vol. 45. New York: Cambridge University Press.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons.
  • Jayaweera, M., H. Perera, B. Gunawardana, and J. Manatunge. 2020. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188:109819. doi:10.1016/j.envres.2020.109819.
  • Jin, H., Q. Li, L. Chen, J. Fan, and L. Lu. 2009. Experimental analysis of particle concentration heterogeneity in a ventilated scale chamber. Atmos. Environ. 43 (28):4311–8. doi:10.1016/j.atmosenv.2009.06.002.
  • Jones, R. M., and M. Nicas. 2014. Experimental evaluation of a Markov multizone model of particulate contaminant transport. Ann. Occup. Hyg. 58 (8):1032–45.
  • Jones, R., and M. Nicas. 2009. Experimental determination of supermicrometer particle fate subsequent to a point release within a room under natural and forced mixing. Aerosol Sci. Technol. 43 (9):921–38. doi:10.1080/02786820903036322.
  • Jurelionis, A., L. Gagytė, T. Prasauskas, D. Čiužas, E. Krugly, L. Šeduikytė, and D. Martuzevičius. 2015. The impact of the air distribution method in ventilated rooms on the aerosol particle dispersion and removal: The experimental approach. Energy Build. 86:305–13. doi:10.1016/j.enbuild.2014.10.014.
  • Kohanski, M. A., L. J. Lo, and M. S. Waring. 2020. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 10 (10):1173–9. In 10. Wiley Online Library. doi:10.1002/alr.22661.
  • Lai, A. C., and S.-L. Wong. 2010. Experimental investigation of exhaled aerosol transport under two ventilation systems. Aerosol Sci. Technol. 44 (6):444–52. doi:10.1080/02786821003733826.
  • Lee, J., D. Yoo, S. Ryu, S. Ham, K. Lee, M. Yeo, K. Min, and C. Yoon. 2019. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection. Aerosol Air Qual. Res. 19 (4):840–53. doi:10.4209/aaqr.2018.01.0031.
  • Lindsley, W. G., W. P. King, R. E. Thewlis, J. S. Reynolds, K. Panday, G. Cao, and J. V. Szalajda. 2012. Dispersion and exposure to a cough-generated aerosol in a simulated medical examination room. J. Occup. Environ. Hyg. 9 (12):681–90. doi:10.1080/15459624.2012.725986.
  • Liu, S., and A. Novoselac. 2014. Transport of airborne particles from an unobstructed cough jet. Aerosol Sci. Technol. 48 (11):1183–94. doi:10.1080/02786826.2014.968655.
  • Liu, Z. W., Zhuang, L. Hu, R. Rong, J. Li, W. Ding, and N. Li. 2020. Experimental and numerical study of potential infection risks from exposure to bioaerosols in one BSL-3 laboratory. Build. Environ. 179:106991. doi:10.1016/j.buildenv.2020.106991.
  • Matsuyama, T. 2018. A discussion on maximum charge held by a single particle due to gas discharge limitation. In AIP Conference Proceedings. Vol. 1927, 020001. AIP Publishing LLC.
  • Miller, S. L., and W. W. Nazaroff. 2001. Environmental tobacco smoke particles in multizone indoor environments. Atmos. Environ. 35 (12):2053–67. doi:10.1016/S1352-2310(00)00506-9.
  • Murakami, S. 1992. Diffusion characteristics of airborne particles with gravitational setting in an convection-dominant indoor flow field. Ashrae Trans. 98 (1):82–97.
  • Nissen, K., J. Krambrich, D. Akaberi, T. Hoffman, J. Ling, Å. Lundkvist, L. Svensson, and E. Salaneck. 2020. Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Sci. Rep. 10 (1):19589. doi:10.1038/s41598-020-76442-2.
  • Picano, F., G. Sardina, and C. M. Casciola. 2009. Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9):093305. doi:10.1063/1.3241992.
  • Qian, H., and Y. Li. 2010. Removal of exhaled particles by ventilation and deposition in a multibed airborne infection isolation room. Indoor Air. 20 (4):284–297. doi:10.1111/j.1600-0668.2010.00653.x.
  • Richmond-Bryant, J., A. D. Eisner, L. A. Brixey, and R. W. Wiener. 2006. Transport of airborne particles within a room. Indoor Air. 16 (1):48–55. doi:10.1111/j.1600-0668.2005.00398.x.
  • Sajo, E., H. Zhu, and J. C. Courtney. 2002. Spatial distribution of indoor aerosol deposition under accidental release conditions. Health Phys. 83 (6):871–883.
  • Seepana, S., and A. C. Lai. 2012. Experimental and numerical investigation of interpersonal exposure of sneezing in a full-scale chamber. Aerosol Sci. Technol. 46 (5):485–493. doi:10.1080/02786826.2011.640365.
  • Stan, C. A., D. Milathianaki, H. Laksmono, R. G. Sierra, T. A. McQueen, M. Messerschmidt, G. J. Williams, J. E. Koglin, T. J. Lane, M. J. Hayes, et al. 2016. Liquid explosions induced by X-ray laser pulses. Nature Phys. 12 (10):966–972. doi:10.1038/nphys3779.
  • Sze To, G. N., M. P. Wan, C. Y. Chao, F. Wei, S. C. Yu, and J. K. Kwan. 2008. A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics. Indoor Air. 18 (5):425–438. doi:10.1111/j.1600-0668.2008.00544.x.
  • Taghavivand, M., P. Mehrani, A. Sowinski, and K. Choi. 2021. Electrostatic charging behaviour of polypropylene particles during pulse pneumatic conveying with spiral gas flow pattern. Chem. Eng. Sci. 229:116081. doi:10.1016/j.ces.2020.116081.
  • Tang, J. W., W. P. Bahnfleth, P. M. Bluyssen, G. Buonanno, J. L. Jimenez, J. Kurnitski, Y. Li, S. Miller, C. Sekhar, L. Morawska, et al. 2021. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)). J. Hosp. Infect. 110:89–96. doi:10.1016/j.jhin.2020.12.022
  • Wan, M. P., C. Yu, H. Chao, Y. D. Ng, G. Nam Sze To, and W. C. Yu. 2007. Dispersion of expiratory droplets in a general hospital ward with ceiling mixing type mechanical ventilation system. Aerosol. Sci. Technol. 41 (3):244–258. doi:10.1080/02786820601146985.
  • Wang, L.-P., and M. R. Maxey. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256:27–68. doi:10.1017/S0022112093002708.
  • Wang, B., H. Wu, and X.-F. Wan. 2020. Transport and fate of human expiratory droplets-A modeling approach. Phys. Fluids (1994) 32 (8):083307. doi:10.1063/5.0021280.
  • Wei, J., and Y. Li. 2015. Enhanced spread of expiratory droplets by turbulence in a cough jet. Build. Environ. 93:86–96. doi:10.1016/j.buildenv.2015.06.018.
  • Wei, J., and Y. Li. 2017. Human cough as a two-stage jet and its role in particle transport. PloS One. 12 (1):e0169235. doi:10.1371/journal.pone.0169235.
  • Yang, S., G. W. Lee, C.-M. Chen, C.-C. Wu, and K.-P. Yu. 2007. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol. Med. 20 (4):484–494. doi:10.1089/jam.2007.0610.
  • Yang, W., and L. C. Marr. 2011. Dynamics of airborne inuenza A viruses indoors and dependence on humidity. PloS One. 6 (6):e21481. doi:10.1371/journal.pone.0021481.
  • Zhang, Z., and Q. Chen. 2006. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmos. Environ. 40 (18):3396–3408. doi:10.1016/j.atmosenv.2006.01.014.
  • Zhang, Z., X. Chen, S. Mazumdar, T. Zhang, and Q. Chen. 2009. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup. Build. Environ. 44 (1):85–94. doi:10.1016/j.buildenv.2008.01.012.
  • Zhang, N., Z. Zheng, S. Eckels, V. B. Nadella, and X. Sun. 2009. Transient response of particle distribution in a chamber to transient particle injection. Part. Part. Syst. Charact. 26 (4):199–209. doi:10.1002/cncr.29118.
  • Zhu, S., S. Kato, and J.-H. Yang. 2006. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Build. Environ. 41 (12):1691–1702. doi:10.1016/j.buildenv.2005.06.024.
  • Zohdi, T. I. 2020. Modeling and simulation of the infection zone from a cough. Comput. Mech. 66 (4):1–1034. doi:10.1007/s00466-020-01875-5.