741
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effect of spray properties on aerosol scavenging efficiency with water mist

, , &
Pages 29-45 | Received 09 Mar 2021, Accepted 27 Jul 2021, Published online: 25 Aug 2021

References

  • Ardon-Dryer, K., Y. W. Huang, and D. J. Cziczo. 2015. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis. Atmos. Chem. Phys. 15 (16):9159–71. doi:10.5194/acp-15-9159-2015.
  • Ali, M., C. Yan, Z. Sun, J. Wang, and H. Gu. 2013. CFD simulation of dust particle removal efficiency of a venturi scrubber in CFX. Nucl. Eng. Des. 256:169–77. doi:10.1016/j.nucengdes.2012.12.013.
  • Brunel, M., and H. Shen. 2013. Design of ILIDS configurations for droplet characterization. Particuology 11 (2):148–57. doi:10.1016/j.partic.2012.06.014.
  • Dépée, A., P. Lemaitre, T. Gelain, A. Mathieu, M. Monier, and A. Flossmann. 2019. Theoretical study of aerosol particle electroscavenging by clouds. J. Aerosol Sci. 135:1–20. doi:10.1016/j.jaerosci.2019.04.001.
  • Diao, H., Y. Zhou, H. Gu, Y. Li, and C. Yan. 2020. Experimental study on the scrubbing efficiency of aerosols contained in horizontal and vertically downward submerged gas jet. Prog. Nucl. Energy 126:103406. doi:10.1016/j.pnucene.2020.103406.
  • Finlay, W. H. 2001. The mechanics of inhaled pharmaceutical aerosols: An introduction. London, UK: Academic Press.
  • Friedlander, S. K. 2000. Smoke, dust and haze: Fundamentals of aerosol dynamics. New York, USA: Oxford University Press.
  • Gelain, T., E. Porcheron, Y. Leblois, I. Doyen, C. Chagnot, C. Journeau, and D. Roulet. 2020. Implementation and validation of an aerosol collection model by a spray in a CFD code: Application to the scavenging of aerosols released during laser cutting operations of fuel debris for the dismantling of the damaged reactors of Fukushima Dai-ichi. In 2020 International Conference on Nuclear Engineering Collocated with the ASME 2020 Power Conference (online conference). American Society of Mechanical Engineers Digital Collection. doi:10.1115/ICONE2020-16141.
  • Glover, A. R., S. M. Skippon, and R. D. Boyle. 1995. Interferometric laser imaging for droplet sizing: A method for droplet-size measurement in sparse spray systems. Appl. Opt. 34 (36):8409–21. doi:10.1364/AO.34.008409.
  • Greenfield, S. M. 1957. Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteor. 14 (2):115–25. doi:10.1175/1520-0469(1957)014 < 0115:RSORPM>2.0.CO;2.
  • Gupta, S., E. Schmidt, M. Freitag, G. Langerock, and F. Funke. 2017. Experimental investigations on containment spray performance under severe accident conditions. Paper presented at The 8rd European Meeting on Severe Accident Research (ERMSAR-2017), Warsaw, Poland, 16-18 May.
  • Inter-Ministerial Council for Contaminated Water and Decommissioning Issues. 2015. Mid-and-long-term roadmap towards the decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station. Accessed July 29, 2021. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/20170926_01a.pdf.
  • Journeau, C., D. Roulet, E. Porcheron, P. Piluso, and C. Chagnot. 2018. Fukushima Daiichi fuel debris simulant materials for the development of cutting and collection technologies. J. Nucl. Sci. Technol. 55 (9):985–95. doi:10.1080/00223131.2018.1462267.
  • Kaltenbach, C., and E. Laurien. 2018. CFD simulation of aerosol particle removal by water spray in the model containment THAI. J. Aerosol Sci. 120:62–81. doi:10.1016/j.jaerosci.2018.03.005.
  • Krstic, M. 2006. Mixing control for jet flows. In Combustion processes in propulsion, ed. Gabriel D. Roy, 87. Burlington, USA: Elsevier Butterworth-Heinemann.
  • Lemaitre, P., E. Porcheron, A. Nuboer, and G. Grehan. 2006. Interferometric Laser Imaging development for Droplets Sizing (ILIDS) in hostile environment. Paper presented at the 10th International Conference on Liquid Atomization and Spray Systems, Kyoto, Japan, August 27 - September 1.
  • Li, B. S., Z. L. Ji, and L. Mei. 2010. An approach for correcting particle size distributions measured by the optical particle counter WELAS 2000. AIP Conference Proceedings 1207 (1): 686–689. doi:10.1063/1.3366449.
  • Li, Y., Z. Sun, H. Gu, and Y. Zhou. 2019. Deposition characteristic of micro-nano soluble aerosol under bubble scrubbing condition. Ann. Nucl. Energy 133:881–8. doi:10.1016/j.anucene.2019.07.039.
  • Liang, H., N. Erkan, V. Solans, and S. Suzuki. 2020. Numerical simulation and validation of aerosol particle removal by water spray droplets with OpenFOAM during the Fukushima Daiichi fuel debris retrieval. Front. Energy Res. 8:102. doi:10.3389/fenrg.2020.00102.
  • Liang, H., Q. Zhou, N. Erkan, and S. Suzuki. 2021. Improvement of aerosol spray scavenging efficiency with water mist. J. Aerosol Sci. 153:105697. doi:10.1016/j.jaerosci.2020.105697.
  • Liang, H., Q. Zhou, N. Erkan, S. Suzuki, Y. Leblois, T. Gelain, and E. Porcheron. 2020. Effect of containment vessel’s size scale on the aerosol spray scavenging efficiency with water mist. In International Conference on Nuclear Engineering, Vol. 83761, V001T04A006. American Society of Mechanical Engineers. doi:10.1115/ICONE2020-16338.
  • Mölter, L., and P. Keßler. 2004. Partikelgrößen-und partikelanzahlbestimmung in der außenluft mit einem neuen optischen aerosolspektrometer. Gefahrstoffe Reinhalt. Luft 64 (10):439–47.
  • Murata, K. K., D. C. Williams, R. O. Griffith, R. G. Gido, E. L. Tadios, F. J. Davis, G. M. Martinez, K. E. Washington, and J. Tills. 1997. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis. No. NUREG/CR–6533. Nuclear Regulatory Commission. doi:10.2172/569132.
  • Nishio, S. 2008. Uncertainty analysis: Particle imaging velocimetry (PIV). ITTC–Recommended Procedures and Guidelines.
  • Nuclear Damage Compensation and Decommissioning Facilitation Corporation. 2016. Technical strategic plan 2016 for decommissioning of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company Holdings. Accessed July 29, 2021. https://www.dd.ndf.go.jp/files/topics/449_ext_02_1.pdf.
  • Pak, S. I., and K. S. Chang. 2006. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray. J. Hazard. Mater. 138 (3):560–73. doi:10.1016/j.jhazmat.2006.05.105.
  • Park, S. H., C. H. Jung, K. R. Jung, B. K. Lee, and K. W Lee. 2005. Wet scrubbing of polydisperse aerosols by freely falling droplets. J Aerosol Sci. 36 (12):1444–58. doi:10.1016/j.jaerosci.2005.03.012.
  • Porcheron, E., P. Lemaitre, D. Marchand, W. Plumecocq, A. Nuboer, and J. Vendel. 2010. Experimental and numerical approaches of aerosol removal in spray conditions for containment application. Nucl. Eng. Des. 240 (2):336–43. doi:10.1016/j.nucengdes.2008.08.023.
  • Porcheron, E., S. Peillon, T. Gelain, C. Chagnot, C. Journeau, and D. Roulet. 2018. Analysis of aerosol emission and dispersion during the laser cutting of Fukushima fuel debris simulants. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection. doi:10.1115/ICONE26-81531.
  • Powers, D. A., and S. B. Burson. 1993. A simplified model of aerosol removal by containment sprays (No. NUREG/CR-5966; SAND-92-2689). Nuclear Regulatory Commission, Washington, DC. Div. of Safety Issue Resolution; Sandia National Labs, Albuquerque, NM. doi:10.2172/6503368.
  • Pruppacher, R. H., and J. D. Klett. 1997. Microphysics of clouds and precipitation, Vol. 18. Kluwer Academic Publishers. Dordrecht, Netherlands: Atmospheric and Oceanographic Sciences Library.
  • Raffel, M., C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans. 2018. Particle image velocimetry: A practical guide. Cham, Switzerland: Springer.
  • Rosati, B., G. Wehrle, M. Gysel, P. Zieger, U. Baltensperger, and E. Weingartner. 2015. The white-light humidified optical particle spectrometer (WHOPS)—A novel airborne system to characterize aerosol hygroscopicity. Atmos. Meas. Tech. 8 (2):921–39. doi:10.5194/amt-8-921-2015.
  • Sumiyoshitani, S., T. Okada, M. Hara, and M. Akazaki. 1984. Direct observation of the collection process for dust particles from an air stream by a charged water droplet. IEEE Trans. Ind. Appl. IA-20 (2):274–81. doi:10.1109/TIA.1984.4504408.
  • Sun, H., Y. Leblois, T. Gelain, and E. Porcheron. 2020. Experimental study on aerosol collection by spray droplets: Application to fission products removal in containment. In International Conference on Nuclear Engineering, Vol. 83785, V003T13A050. American Society of Mechanical Engineers. doi:10.1115/ICONE2020-16857.
  • Wang, A., Q. Song, and Q. Yao. 2015. Behavior of hydrophobic micron particles impacting on droplet surface. Atmos. Environ. 115:1–8. doi:10.1016/j.atmosenv.2015.05.053.
  • Wang, L. P., A. S. Wexler, and Y. Zhou. 1998. Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids 10 (10):2647–51. doi:10.1063/1.869777.
  • Yang, H., and C. J. Hogan, Jr. 2017. Collision rate coefficient for charged dust grains in the presence of linear shear. Phys. Rev. E. 96 (3-1):032911. doi:10.1103/PhysRevE.96.032911.
  • Zhang, X., N. Erkan, K. Okamoto, and H. Liang. 2019. Effects of ultrafine bubbles on the aerosols removal efficiency due to pool scrubbing. In The Proceedings of the International Conference on Nuclear Engineering (ICONE) 2019.27, 2022. The Japan Society of Mechanical Engineers. doi:10.1299/jsmeicone.2019.27.2022.
  • Zhou, Y., Z. Sun, H. Gu, and H. Yu. 2020. Development of structural optimization design method for multilayer metal fiber filter in nuclear power plant. Prog. Nucl. Energy 124:103361. doi:10.1016/j.pnucene.2020.103361.
  • Zuo, Z., J. Wang, Y. Huo, H. Liu, and R. Xu. 2016. Particle motion induced by electrostatic force of a charged droplet. Environ. Eng. Sci. 33 (9):650–8. doi:10.1089/ees.2015.0470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.