1,689
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental verification of principal losses in a regulatory particulate matter emissions sampling system for aircraft turbine engines

, , , , , , , , , , , , , , , , , , , , , , , , & show all
Pages 63-74 | Received 12 May 2021, Accepted 30 Jul 2021, Published online: 08 Nov 2021

References

  • Abdul-Khalek, I. S., and D. B. Kittelson. 1995. Real time measurement of volatile and solid particles using a catalytic stripper. SAE Technical Paper Series, 950236.
  • AVL. 2021. AVL particle sampling system aviation. Accessed April 21, 2021. https://www.avl.com/-/avl-particle-sampling-system-aviation.
  • Boies, A. M., M. E. J. Stettler, J. J. Swanson, T. J. Johnson, J. S. Olfert, M. Johnson, M. L. Eggersdorfer, T. Rindlisbacher, J. Wang, K. Thomson, et al. 2015. Particle emission characteristics of a gas turbine with a double annular combustor. Aerosol Sci. Technol. 49 (9):842–55. doi:10.1080/02786826.2015.1078452.
  • Brem, B. T., L. Durdina, F. Siegerist, P. Beyerle, K. Bruderer, T. Rindlisbacher, S. Rocci-Denis, M. G. Andac, J. Zelina, O. Penanhoat, et al. 2015. Effects of fuel aromatic content on nonvolatile particulate emissions of an in-production aircraft gas turbine. Environ. Sci. Technol. 49 (22):13149–57. doi:10.1021/acs.est.5b04167.
  • Burkhardt, U., L. Bock, and A. Bier. 2018. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. npj Clim. Atmos. Sci. 1 (1):37. doi:10.1038/s41612-018-0046-4.
  • Buseck, P. R., K. Adachi, A. Gelencser, E. Tompa, and M. Posfai. 2012. Are black carbon and soot the same? Atmos. Chem. Phys. Discuss. 12:24821–46.
  • Crane, R. I., and R. L. Evans. 1977. Inertial deposition of particles in a bent pipe. J. Aerosol Sci. 8 (3):161–70. doi:10.1016/0021-8502(77)90003-9.
  • Crayford, A., M. Johnson, R. Marsh, Y. Sevcenco, D. Walters, P. Williams, S. Christie, W. Chung, A. Petzold, A. Ibrahim, et al. 2011. SAMPLE III-SC01: studying, sampling and measuring of aircraft particulate emissions. Final Report, 23rd October 2011 (http://easa.europa.eu/document-library/research-projects/easa2010fc10-sc01).
  • Delhaye, D.,. F.-X. Ouf, D. Ferry, I. K. Ortega, O. Penanhoat, S. Peillon, F. Salm, X. Vancassel, C. Focsa, C. Irimiea, et al. 2017. The MERMOSE project: characterization of particulate matter emissions of a commercial aircraft engine. J. Aerosol Sci. 105:48–63. doi:10.1016/j.jaerosci.2016.11.018.
  • Durand, E. F., A. P. Crayford, and M. Johnson. 2020. Experimental validation of thermophoretic and bend nanoparticle loss for a regulatory prescribed aircraft NvPM sampling system. Aerosol Sci. Technol. 54 (9):1019–33. doi:10.1080/02786826.2020.1756212.
  • Durdina, L., B. T. Brem, M. Abegglen, P. Lobo, T. Rindlisbacher, K. A. Thomson, G. J. Smallwood, D. E. Hagen, B. Sierau, and J. Wang. 2014. Determination of PM mass emissions from an aircraft turbine engine using particle effective density. Atmos. Environ. 99 (December):500–7. doi:10.1016/j.atmosenv.2014.10.018.
  • Durdina, L., B. T. Brem, A. Setyan, F. Siegerist, T. Rindlisbacher, and J. Wang. 2017. Assessment of particle pollution from jetliners: from smoke visibility to nanoparticle counting. Environ. Sci. Technol. 51 (6):3534–41. doi:10.1021/acs.est.6b05801.
  • Friedlander, S. K., and H. F. Johnstone. 1957. Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49 (7):1151–6. doi:10.1021/ie50571a039.
  • Herndon, S. C., J. T. Jayne, P. Lobo, T. B. Onasch, G. Fleming, D. E. Hagen, P. D. Whitefield, and R. C. Miake-Lye. 2008. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta international airport. Environ. Sci. Technol. 42 (6):1877–83. doi:10.1021/es072029+.
  • Hinds, W. C. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles. 2nd ed. New York: John Wiley & Sons.
  • ICAO. 2017. ICAO international standards and recommended practices, ANNEX 16 to the convention on international civil aviation, environmental protection, Volume II – Aircraft engine emissions. 4th ed. Montreal, Quebec, CA: International Civil Aviation Organization, United Nations.
  • Jonsdottir, H. R., M. Delaval, Z. Leni, A. Keller, B. T. Brem, F. Siegerist, D. Schönenberger, L. Durdina, M. Elser, H. Burtscher, et al. 2019. Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Commun. Biol. 2:90. doi:10.1038/s42003-019-0332-7.
  • Kärcher, B. 2016. The importance of contrail ice formation for mitigating the climate impact of aviation. J. Geophys. Res. Atmos. 121 (7):3497–505. doi:10.1002/2015JD02469.
  • Kim, J. H., G. W. Mulholland, S. R. Kukuck, and D. Y. H. Pui. 2005. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110 (1):31–54. doi:10.6028/jres.110.005.
  • Kinsey, J. S., R. Giannelli, R. Howard, B. Hoffman, R. Frazee, M. Aldridge, C. Leggett, K. Stevens, D. Kittelson, W. Silvis, et al. 2021. Assessment of the variability and particle losses in a regulatory measurement system used for the determination of the non-volatile particulate matter emissions from commercial aircraft engines. J. Aerosol Sci. 154:105734. doi:10.1016/j.jaerosci.2020.105734.
  • Kinsey, J. S., M. D. Hays, Y. Dong, D. C. Williams, and R. Logan. 2011. Chemical characterization of the fine particle emissions from commercial aircraft engines during the aircraft particle emissions EXperiment (APEX) 1 to 3. Environ. Sci. Technol. 45 (8):3415–21. doi:10.1021/es103880d.
  • Kittelson, D., and J. Johnson. 1991. Variability in particle emission measurements in the heavy duty transient test. SAE Technical Paper 910738. doi:10.4271/910738.
  • Leong, K. H., H. C. Wang, J. J. Stukel, and P. K. Hopke. 1982. An improved constant output atomizer. Am. Ind. Hyg. Assoc. J. 43 (2):135–6. doi:10.1080/15298668291409488.
  • Liscinsky, D. S., and H. H. Hollick. 2010. Effect of particle sampling technique and transport on particle penetration at the high temperature and pressure conditions found in gas turbine combustors and engines. NASA Contractor Report, NASA/CR-2010-NNC07CB03C.
  • Liu, B. Y. H., and K. W. Lee. 1975. An aerosol generator of high stability. Am. Ind. Hyg. Assoc. J. 36 (12):861–5. doi:10.1080/0002889758507357.
  • Lobo, P., L. Durdina, G. J. Smallwood, T. Rindlisbacher, F. Siegerist, E. A. Black, Z. Yu, A. A. Mensah, D. E. Hagen, R. C. Miake-Lye, et al. 2015. Measurement of aircraft engine non-volatile PM emissions: results of the aviation-particle regulatory instrumentation demonstration experiment (A-PRIDE) 4 campaign. Aerosol Sci. Technol. 49 (7):472–84. doi:10.1080/02786826.2015.1047012.
  • Lobo, P., D. E. Hagen, P. D. Whitefield, and D. Raper. 2015. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study. Atmos. Environ. 104:237–e45. doi:10.1016/j.atmosenv.2015.01.020.
  • Masiol, M., and R. M. Harrison. 2014. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review. Atmos. Environ. (1994) 95:409–55. doi:10.1016/j.atmosenv.2014.05.070.
  • Onasch, T. B., J. T. Jayne, S. Herndon, D. R. Worsnop, R. C. Miake-Lye, I. P. Mortimer, and B. E. Anderson. 2009. Chemical properties of aircraft engine particulate exhaust emissions. J. Propul. Power 25 (5):1121–37. doi:10.2514/1.36371.
  • Petzold, A., and F. P. Schröder. 1998. Jet engine exhaust aerosol characterization. Aerosol Sci. Technol. 28 (1):62–76. doi:10.1080/02786829808965512.
  • Pui, D. Y. H., F. Romay-Novas, and B. Y. H. Liu. 1987. Experimental study of particle deposition in bends of circular cross section. Aerosol Sci. Technol. 7 (3):301–15. doi:10.1080/02786828708959166.
  • SAE International. 2012. Nonvolatile exhaust particle measurement techniques. Aerospace Information Report 5892B, Warrendale, PA, March.
  • SAE International. 2017. Procedure for the calculation of non-volatile particulate matter sampling and measurement system penetration functions and system loss correction factors. Aerospace Information Report 6405, Warrendale, PA, October.
  • SAE International. 2018. Procedure for the continuous sampling and measurement of non-volatile particle emissions from aircraft turbine engines. Aerospace Recommended Practice 6320, Warrendale, PA, January.
  • SAE International. 2019. Procedure for the calculation of non-volatile particulate matter sampling and measurement system losses and system loss correction factors. Aerospace recommended practice 6481, Warrendale, PA, February.
  • Schwartz, S. E., and E. R. Lewis. 2012. Interactive comment on “Are black carbon and soot the same?” by P. R. Buseck et al.: Disagreement, on proposed nomenclature. Atmos. Chem. Phys. Discuss 12:C9099–C9109.
  • Swanson, J., and D. Kittelson. 2010. Evaluation of thermal denuder and catalytic stripper methods for solid particle measurements. J. Aerosol Sci. 41 (12):1113–22. doi:10.1016/j.jaerosci.2010.09.003.
  • Swanson, J., D. Kittelson, B. Giechaskiel, A. Bergmann, and M. Twigg. 2013. A miniature catalytic stripper for particles less than 23 nanometers. SAE Int. J. Fuels Lubr. 6 (2):542–51. doi:10.4271/2013-01-1570.
  • Timko, M. T., E. Fortner, J. Franklin, Z. Yu, H.-W. Wong, T. B. Onasch, R. C. Miake-Lye, and S. C. Herndon. 2013. Atmospheric measurements of the physical evolution of aircraft exhaust plumes. Environ. Sci. Technol. 47 (7):3513–20. doi:10.1021/es304349c.
  • Timko, M. T., S. C. Herndon, E. C. Wood, T. B. Onasch, M. J. Northway, J. T. Jayne, M. R. Canagaratna, R. C. Miake-Lye, and W. B. Knighton. 2010. Gas turbine engine emissions—Part I: volatile organic compounds and nitrogen oxides. J. Eng. Gas Turbines Power 132 (6). doi:10.1115/1.4000131.
  • Timko, M. T., T. B. Onasch, M. J. Northway, J. T. Jayne, M. R. Canagaratna, S. C. Herndon, E. C. Wood, R. C. Miake-Lye, and W. B. Knighton. 2010. Gas turbine engine emissions—Part II: chemical properties of particulate matter. J. Eng. Gas Turbines Power 132 (6):061505–20. doi:10.1115/1.4000132.
  • Tsai, C.-J., J.-S. Lin, S. G. Aggarwal, and D.-R. Chen. 2004. Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Sci. Technol. 38 (2):131–9. doi:10.1080/02786820490251358.
  • Tsai, C.-J., and D. Y. H. Pui. 1990. Numerical study of particle deposition in bends of a circular cross-section-laminar flow regime. Aerosol Sci. Technol. 12 (4):813–31. doi:10.1080/02786829008959395.
  • Tsai, C.-J., D. Y. H. Pui, and B. Y. H. Liu. 1990. Capture and rebound of small particles upon impact with solid surfaces. Aerosol Sci. Technol. 12 (3):497–507. doi:10.1080/02786829008959364.
  • U.S. EPA - United States Environmental Protection Agency. 2019. Integrated science assessment for particulate matter, U.S. EPA, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA, document No. EPA 600/R-19/188.
  • United States Department of Transportation, Bureau of Transportation Statistics. 2021. Last accessed April 21, 2021. https://www.transtats.bts.gov/TRAFFIC/.
  • Wey, T., and N.-S. Liu. 2008. Assessment of microphysical models in the national combustion code (NCC) for aircraft particulate emissions: particle loss in sampling lines. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 257.
  • Yim, S. H. L., G. L. Lee, I. H. Lee, F. Allroggen, A. Ashok, F. Caiazzo, S. D. Eastham, R. Malina, and S. R. H. Barrett. 2015. Global, regional and local health impacts of civil aviation emissions. Environ. Res. Lett. 10 (3):034001. doi:10.1088/1748-9326/10/3/034001.
  • Yook, S. J., and D. Y. H. Pui. 2005. Estimation of penetration efficiencies through nasa sampling lines. Submitted to C.-M. Lee, NASA Glenn Research Center.