534
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Analytical and numerical calculation of the detachment of particle structures from fibers

, , , &
Pages 1-11 | Received 29 Mar 2021, Accepted 21 Jul 2021, Published online: 14 Sep 2021

References

  • Berbner, S., and F. Löffler. 1994. Influence of high temperatures on particle adhesion. Powder Technol. 78 (3):273–80. doi:10.1016/0032-5910(93)02798-F.
  • Braschke, K., and U. Janoske. 2018. Eine Immersed Boundary Methode zur Berechnung komplexer Partikelinteraktionen für volumetrisch aufgelöste Partikel. In NAFEMS: Neue Methoden in der numerischen Strömungsberechnung (CFD) – Alternativen zu Finite-Volumen-Methoden? Wiesbaden, Germany, November 12 and 13, 2018.
  • Bürger, M. 2020. An immersed boundary method for arbitrarily shaped lagrangian bodies. PhD thesis, Bergische Universität Wuppertal.
  • Dahneke, B. 1972. The influence of flattening on the adhesion of particles. J. Colloid. Interface. Sci. 40 (1):1–13. doi:10.1016/0021-9797(72)90168-3.
  • Derjaguin, B. V., V. Muller, and Y. Toporov. 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53 (2):314–26. doi:10.1016/0021-9797(75)90018-1.
  • Eichenlaub, S., C. Chan, and S. Beaudoin. 2002. Hamaker constants in integrated circuit metalization. J Colloid Interface Sci. 248 (2):389–97. doi:10.1006/jcis.2002.8241.
  • Götzinger, M., and W. Peukert. 2004. Particle adhesion force distributions on rough surfaces. Langmuir 20 (13):5298–303. doi:10.1021/la049914f.
  • Haarmann, A. 2016. Haftmoment im Partikel-Wand Kontakt - Simulation und Messung des Haftmomentes in gasförmiger Umgebung. PhD thesis, Bergische Universität Wuppertal.
  • Hamaker, H. 1937. The london—van der waals attraction between spherical particles. Physica 4 (10):1058–72. doi:10.1016/S0031-8914(37)80203-7.
  • Hölzer, A., and M. Sommerfeld. 2008. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184 (3):361–5. doi:10.1016/j.powtec.2007.08.021.
  • Israelachvili, J. N. 1994. Intermolecular and surface forces. London: Academic Press.
  • Johnson, K., K. Kendall, and A. Roberts. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. 324:301–13. doi:10.1098/rspa.1971.0141.
  • Kelly, A. 1973. Werkstoffe hoher Festigkeit. Werkstoffkunde, Bd. 4. Braunschweig: Springer Vieweg.
  • Kim, S. C., J. Wang, W. G. Shin, J. H. Scheckman, and D. Y. H. Pui. 2009. Structural properties and filter loading characteristics of soot agglomerates. Aerosol Sci. Technol. 43 (10):1033–41. doi:10.1080/02786820903131081.
  • Li, S.-Q., and J. S. Marshall. 2007. Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. J. Aerosol Sci 38 (10):1031–46. doi:10.1016/j.jaerosci.2007.08.004.
  • Löffler, F. 1972. Abblasen von an Filterfasern abgeschiedenen Feststoffteilchen. Verfahrenstechnik 6:3–7.
  • Martin, H. 1980. Wärme- und Stoffübergang in der Wirbelschicht. Chem. Ing. Tech. 52 (3):199–209. doi:10.1002/cite.330520303.
  • Poggemann, L., J. Meyer, and A. Dittler. 2021. A novel method to investigate detachment of particulate structures from an elastic single fiber at low gas flow velocities. J. Aerosol Sci. 156:105785. doi:10.1016/j.jaerosci.2021.
  • Przekop, R., and L. Gradoń. 2008. Deposition and filtration of nanoparticles in the composites of nano and microsized fibers. Aerosol Sci. Technol. 42 (6):483–93. doi:10.1080/02786820802187077.
  • Rumpf, H. 1970. Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftübertragung an Kontaktpunkten. Chem. Ing. Tech. 42 (8):538–40. doi:10.1002/cite.330420806.
  • Schaefer, D., M. Carpenter, B. Gady, R. Reifenberger, L. Demejo, and D. Rimai. 1995. Surface roughness and its influence on particle adhesion using atomic force techniques. J. Adhes. Sci. Technol. 9 (8):1049–62. doi:10.1163/156856195X00897.
  • Schubert, H. 1975. Tensile strength of agglomerates. Powder Technol. 11 (2):107–19. doi:10.1016/0032-5910(75)80036-2.
  • Singh, M., and J. Gupta. 1971. The effect of permeability on the drag of a porous sphere in a uniform stream. Z Angew. Math. Mech. 51 (1):27–32. doi:10.1002/zamm.19710510103.
  • Span, R. 2013. VDI-Wärmeatlas, chapter Trockene Luft, 196–217. Berlin, Heidelberg: Springer Vieweg.
  • Tomas, J. 2006. Mechanics of particle adhesion. In Extended master version of J. Tomas, ed. K. L. Mittal, 183–229. Particles on Surfaces 8: Detection, Adhesion and Removal, VSP Utrecht (2003), and full version of review paper of CHISA event, Prague 2004, 2006. London: CRC Press.
  • Tsai, C.-J., D. Pui, and B. Liu. 1991. Elastic flattening and particle adhesion. Aerosol Sci. Technol. 15 (4):239–55. doi:10.1080/02786829108959531.
  • Visser, J. 1972. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Colloid Interface Sci. 3 (4):331–63. doi:10.1016/0001-8686(72)85001-2.
  • Weber, J. 2016. Numerische Simulation von Transport- und Abscheideprozessen in der Gas-Feststoff-Filtration. PhD thesis, Universität Stuttgart.
  • Zoller, J., A. Zargaran, K. Braschke, J. Meyer, U. Janoske, and A. Dittler. 2021. Experimental investigation of reactive-inert particulate matter detachment from metal fibres at low flow velocities and different gas temperatures. Aerosol Sci. Eng. 5 (1):21–7. doi:10.1007/s4181.0-020-00081-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.