761
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The performance of an electrical ionizer as a bipolar aerosol charger for charging ultrafine particles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 117-133 | Received 25 Feb 2021, Accepted 24 Aug 2021, Published online: 17 Sep 2021

References

  • Adachi, M., Y. Kousaka, and K. Okuyama. 1985. Unipolar and bipolar diffusion charging of ultrafine aerosol particles. J. Aerosol Sci. 16 (2):109–23. doi:10.1016/0021-8502(85)90079-5.
  • Adachi, M., K. Okuyama, Y. Kousaka, and T. Takahashi. 1980. Electrical charging of uncharged aerosol particles under at bipolar ion concentrations. J. Chem. Eng. Japan. 13 (1):55–60. doi:10.1252/jcej.13.55.
  • Alonso, M., and F. J. Alguacil. 2003. The effect of ion and particle losses in a diffusion charger on reaching a stationary charge distribution. J. Aerosol Sci. 34 (12):1647–64. doi:10.1016/S0021-8502(03)00357-4.
  • Alonso, M., Y. Kousaka, T. Hashimoto, and N. Hashimoto. 1997a. Penetration of nanometer-sized aerosol particles through wire screen and laminar flow tube. Aerosol Sci. Technol. 27 (4):471–80. doi:10.1080/02786829708965487.
  • Alonso, M., Y. Kousaka, T. Nomura, N. Hashimoto, and T. Hashimoto. 1997b. Bipolar charging and neutralization of nanometer-sized aerosol particles. J. Aerosol Sci. 28 (8):1479–90. doi:10.1016/S0021-8502(97)00036-0.
  • Barmpounis, K., A. Maisser, A. Schmidt-Ott, and G. Biskos. 2016. Lightweight differential mobility analyzers: Toward new and inexpensive manufacturing methods. Aerosol Sci. Technol. 50 (1):2–5. doi:10.1080/02786826.2015.1130216.
  • Cai, R., D.-R. Chen, J. Hao, and J. Jiang. 2017. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing. J. Aerosol Sci. 106:111–9. doi:10.1016/j.jaerosci.2017.01.004.
  • Clement, C. F., and R. G. Harrison. 1992. The charging of radioactive aerosols. J. Aerosol Sci. 23 (5):481–504. doi:10.1016/0021-8502(92)90019-R.
  • Davidson, J. H., and E. J. Shaughnessy. 1986. Turbulence generation by electric body forces. Exp. Fluids 4 (1):17–26. doi:10.1007/BF00316781.
  • Forsyth, B., B. Y. H. Liu, and F. J. Romay. 1998. Particle charge distribution measurement for commonly generated laboratory aerosols. Aerosol Sci. Technol. 28 (6):489–501. doi:10.1080/02786829808965540.
  • Franchin, A., S. Ehrhart, J. Leppä, T. Nieminen, S. Gagné, S. Schobesberger, D. Wimmer, J. Duplissy, F. Riccobono, E. M. Dunne, et al. 2015. Experimental investigation of ion–ion recombination under atmospheric conditions. Atmos. Chem. Phys. 15 (13):7203–16. doi:10.5194/acp-15-7203-2015.
  • Gibalov, V. I., and G. J. Pietsch. 2000. The development of dielectric barrier discharges in gas gaps and on surfaces. J. Phys. D. Appl. Phys. 33 (20):2618–36. doi:10.1088/0022-3727/33/20/315.
  • Guan, Y., R. S. Vaddi, A. Aliseda, and I. Novosselov. 2018. Analytical model of electro-hydrodynamic flow in corona discharge. Phys. Plasmas 25 (8):83507.
  • Gunn, R. 1955. The statistical electrification of aerosols by ionic diffusion. J. Colloid Sci. 10 (1):107–19. doi:10.1016/0095-8522(55)90081-7.
  • Hernandez-Sierra, A., F. J. Alguacil, and M. Alonso. 2003. Unipolar charging of nanometer aerosol particles in a corona ionizer. J. Aerosol Sci. 34 (6):733–45. doi:10.1016/S0021-8502(03)00033-8.
  • Hontañón, E., and F. E. Kruis. 2008. Single charging of nanoparticles by UV photoionization at high flow rates. Aerosol Sci. Technol. 42 (4):310–23. doi:10.1080/02786820802054244.
  • Hoppel, W. A., and G. M. Frick. 1990. The nonequilibrium character of the aerosol charge distributions produced by neutralizes. Aerosol Sci. Technol. 12 (3):471–96. doi:10.1080/02786829008959363.
  • Hussin, A., H. G. Scheibel, K. H. Becker, and J. Porstendörfer. 1983. Bipolar diffusion charging of aerosol particles—I: Experimental results within the diameter range 4–30 nm. J. Aerosol Sci. 14 (5):671–7. doi:10.1016/0021-8502(83)90071-X.
  • IAEA. 2005. Categorization of radioactive sources IAEA safety standards series no. RS-G-1.9. IAEA. Saf. Guid. 70: 7–10.
  • Ibarra, I., J. Rodríguez-Maroto, and M. Alonso. 2020. Bipolar charging and neutralization of particles below 10 nm, the conditions to reach the stationary charge distribution, and the effect of a non-stationary charge distribution on particle sizing. J. Aerosol Sci. 140:105479. doi:10.1016/j.jaerosci.2019.105479.
  • Intra, P., and N. Tippayawong. 2009. Measurements of ion current from a corona-needle using a faraday cup electrometer. Chiang Mai J. Sci. 36 (1):110–9.
  • Kimoto, S., K. Mizota, M. Kanamaru, H. Okuda, D. Okuda, and M. Adachi. 2009. Aerosol charge neutralization by a mixing-type bipolar charger using corona discharge at high pressure. Aerosol Sci. Technol. 43 (9):872–80. doi:10.1080/02786820902998381.
  • Kimoto, S., K. Saiki, M. Kanamaru, and M. Adachi. 2010. A small mixing-type unipolar charger (SMUC) for nanoparticles. Aerosol Sci. Technol. 44 (10):872–80. doi:10.1080/02786826.2010.498796.
  • Kruis, F. E., and H. Fissan. 2001. Nanoparticle charging in a twin hewitt charger. J. Nanoparticle Res. 3 (1):39–50. doi:10.1023/A:1011425816983.
  • Kwon, S.-B., H. Sakurai, and T. Seto. 2007. Unipolar charging of nanoparticles by the surface-discharge microplasma aerosol charger (SMAC). J. Nanopart. Res. 9 (4):621–30. doi:10.1007/s11051-006-9117-2.
  • Kwon, S. B., T. Fujimoto, Y. Kuga, H. Sakurai, and T. Seto. 2005. Characteristics of Aerosol charge distribution by surface-discharge microplasma aerosol charger (SMAC). Aerosol Sci. Technol. 39 (10):987–1001. doi:10.1080/02786820500380263.
  • Kwon, S. B., H. Sakurai, T. Seto, and Y. J. Kim. 2006. Charge neutralization of submicron aerosols using surface-discharge microplasma. J. Aerosol Sci. 37 (4):483–99. doi:10.1016/j.jaerosci.2005.05.007.
  • Li, L., and D.-R. Chen. 2011. Performance study of a DC-corona-based particle charger for charge conditioning. J. Aerosol Sci. 42 (2):87–99. doi:10.1016/j.jaerosci.2010.12.001.
  • Liu, B. Y. H., and D. Y. H. Pui. 1974. Electrical neutralization of aerosols. J. Aerosol Sci. 5 (5):465–72. doi:10.1016/0021-8502(74)90086-X.
  • Liu, B. Y. H., D. Y. H. Pui, and B. Y. Lin. 1986. Aerosol charge neutralization by a radioactive alpha source. Part. Part. Syst. Charact. 3 (3):111–6. doi:10.1002/ppsc.19860030304.
  • Liu, S., and M. Neiger. 2001. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J. Phys. D. Appl. Phys. 34 (11):1632–8. doi:10.1088/0022-3727/34/11/312.
  • Manirakiza, E., T. Seto, S. Osone, K. Fukumori, and Y. Otani. 2013. High-efficiency unipolar charger for sub-10 nm aerosol particles using surface-discharge microplasma with a voltage of sinc function. Aerosol Sci. Technol. 47 (1):60–8. doi:10.1080/02786826.2012.725492.
  • Munir, M. M., A. Suhendi, T. Ogi, F. Iskandar, and K. Okuyama. 2013. Ion-induced nucleation rate measurement in SO2/H 2O/N2 gas mixture by soft X-ray ionization at various pressures and temperatures. Adv. Powder Technol. 24 (1):143–9. doi:10.1016/j.apt.2012.04.002.
  • Mustika, W. S., D. A. Hapidin, C. Saputra, and M. M. Munir. 2021. Dual needle corona discharge to generate stable bipolar ion for neutralizing electrosprayed nanoparticles. Adv. Powder Technol. 32 (1):166–74. doi:10.1016/j.apt.2020.11.026.
  • Nishida, R. T., A. M. Boies, and S. Hochgreb. 2018. Measuring ultrafine aerosols by direct photoionization and charge capture in continuous flow. Aerosol Sci. Technol. 52 (5):546–56. doi:10.1080/02786826.2018.1430350.
  • Nishida, R. T., T. J. Johnson, J. S. Hassim, B. M. Graves, A. M. Boies, and S. Hochgreb. 2020. A simple method for measuring fine-to-ultrafine aerosols using bipolar charge equilibrium. ACS Sens. 5 (2):447–53. doi:10.1021/acssensors.9b02143.
  • Okuyama, K., N. Kitada, and T. Motouchi. 1983. Bipolar charging of ultrafine aerosol particles. Aerosol Sci. Technol. 2 (4):421–7.
  • Osone, S., E. Manirakiza, T. Seto, Y. Otani, and T. Fujimoto. 2012. Potential of surface-discharge microplasma device as ion source for high-efficiency electrical charging of nanoparticles. J. Chem. Eng. Japan. 45 (1):21–7. doi:10.1252/jcej.11we135.
  • Qi, C., and P. Kulkarni. 2013. Miniature dual-corona ionizer for bipolar charging of aerosol. Aerosol Sci. Technol. 47 (1):81–92.
  • Romay, F. J., B. Y. H. Liu, and D. Y. H. Pui. 1994. A sonic jet corona ionizer for electrostatic discharge and aerosol neutralization. Aerosol Sci. Technol. 20 (1):31–41. doi:10.1080/02786829408959661.
  • Shimada, M., B. Han, K. Okuyama, and Y. Otani. 2002. Bipolar charging of aerosol nanoparticles by a soft x-ray photoionizer. J. Chem. Eng. Japan. 35 (8):786–93. doi:10.1252/jcej.35.786.
  • Song, D. K., H. M. Lee, H. Chang, S. S. Kim, M. Shimada, and K. Okuyama. 2006. Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. J. Aerosol Sci. 37 (5):598–615. doi:10.1016/j.jaerosci.2005.06.003.
  • Stommel, Y. G., and U. Riebel. 2004. A new corona discharge-based aerosol charger for submicron particles with low initial charge. J. Aerosol Sci. 35 (9):1051–69. doi:10.1016/j.jaerosci.2004.03.005.
  • Ungethüm, E. 1974. The mobilities of small ions in the atmosphere and their relationship. J. Aerosol Sci. 5 (1):25–37. doi:10.1016/0021-8502(74)90004-4.
  • Whitby, K. T. 1961. Generator for producing high concentrations of small ions. Rev. Sci. Instrum. 32 (12):1351–5. doi:10.1063/1.1717250.
  • Wiedensohler, A., E. Lütkemeier, M. Feldpausch, and C. Helsper. 1986. Investigation of the bipolar charge distribution at various gas conditions. J. Aerosol Sci. 17 (3):413–6. doi:10.1016/0021-8502(86)90118-7.
  • Yu, T., Y. Yang, J. Liu, H. Gui, J. Zhang, Y. Cheng, W. Wang, P. Du, J. Wang, and H. Wang. 2017. Comparative study of cylindrical and parallel-plate electrophoretic separations for the removal of ions and sub-23 nm particles. J. Sep. Sci. 40 (24):4813–24. doi:10.1002/jssc.201700750.
  • Yun, C.-M., Y. Otani, and H. Emi. 1997. Development of unipolar ion generator—separation of ions in axial direction of flow. Aerosol Sci. Technol. 26 (5):389–97. doi:10.1080/02786829708965439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.