528
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Identification and particle sizing of submicron mineral dust by using complex forward-scattering amplitude data

ORCID Icon, ORCID Icon & ORCID Icon
Pages 609-622 | Received 16 Dec 2021, Accepted 20 Mar 2022, Published online: 07 Apr 2022

References

  • Arakawa, E. T. P. S. Tuminello, B. N. Khare, M. E. Millham, S. Authier, and J. Pierce. 1997. Measurement of optical properties of small particles. Oak Ridge National Lab., Oak Ridge, TN.
  • Bangalath, H. K, and G. Stenchikov. 2015. Role of dust direct radiative effect on the tropical rain belt over Middle East and North Africa: A high-resolution AGCM study. J. Geophys. Res. Atmosph. 120 (10):4564–84.
  • Bedidi, A, and B. Cervelle. 1993. Light scattering by spherical particles with hematite and goethitelike optical properties: effect of water impregnation. J. Geophys. Res. Solid Earth. 98 (B7):11941–52.
  • Berg, M. J, and G. Videen. 2011. Digital holographic imaging of aerosol particles in flight. J. Quant. Spectrosc. Radiat. Transf. 112 (11):1776–83.
  • Broadley, S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condliffe, and L. Neve. 2012. Immersion mode heterogeneous ice nucleation by an Illite Rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys. 12 (1):287–307.
  • Campello, R. J. D. Moulavi, and J. Sander. 2013. Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining, 160–72. Berlin, Heidelberg: Springer.
  • Chernyshev, A. V., V. I. Prots, A. A. Doroshkin, and V. P. Maltsev. 1995. Measurement of scattering properties of individual particles with a scanning flow cytometer. Appl. Opt. 34 (27):6301–5.
  • Cho, Y. S., S. C. Hong, J. Choi, and J. H. Jung. 2019. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sens. Actuator. B 284:525–33.
  • DeMott, P. J., T. C. Hill, M. D. Petters, A. K. Bertram, Y. Tobo, R. H. Mason, K. J. Suski, C. S. McCluskey, E. J. Levin, and G. P. Schill. 2017. Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmos. Chem. Phys. 17 (18):11227–11245. doi:10.5194/acp-17-11227-2017.
  • Friedrich, F., A. Steudel, and P. G. Weidler. 2008. Change of the refractive index of illite particles by reduction of the Fe content of the octahedral sheet. Clays Clay Miner. 56 (5):505–10.
  • Gysel, M., M. Laborde, J. S. Olfert, R. Subramanian, and A. J. Gröhn. 2011. Effective density of aquadag and fullerene soot black carbon reference materials used for SP2 calibration. Atmos. Meas. Tech. 4 (12):2851–8.
  • Hale, G. M, and M. R. Querry. 1973. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12 (3):555–63.
  • Hastie, T, and W. Stuetzle. 1989. Principal curves. J. Am. Stat. Assoc. 84 (406):502–16.
  • Hoose, C, and O. Möhler. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12 (20):9817–54.
  • Huebert, B. J. S. G. Howell, D. Covert, A. Clarke, J. R. Anderson, B. G. Lafleur, R. Seebaugh, J. C. Wilson, D. Gesler, and D. Baumgardner. 2000. Passing efficiency of a low turbulence inlet (PELTI), Final Report to NSF.
  • Huffman, D. R, and J. L. Stapp. 1973. Optical measurements on solids of possible interstellar importance. In Symposium-international astronomical union, 52, 297–301. Cambridge: Cambridge University Press.
  • Hulst, H. C, and H. C. van de Hulst. 1981. Light scattering by small particles. Mineola, NY: Dover Publication Inc.
  • Ito, A, and R. Wagai. 2017. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Sci. Data 4 (1):1–11.
  • Jickells, T. D., Z. S. An, K. K. Andersen, A. R. Baker, G. Bergametti, N. Brooks, J. J. Cao, P. W. Boyd, R. A. Duce, K. A. Hunter, et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308 (5718):67–71.
  • Jones, A. R. 1999. Light scattering for particle characterization. Prog. Energy Combust. Sci. 25 (1):1–53.
  • Journet, E., K. V. Desboeufs, S. Caquineau, and J.-L. Colin. 2008. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35 (7):L07805.
  • Kalashnikova, O. V, and IN. Sokolik. 2004. Modeling the radiative properties of nonspherical soil-derived mineral aerosols. J. Quant. Spectrosc. Radiat. Transf. 87 (2):137–66.
  • Kaspari, S. D., M. Schwikowski, M. Gysel, M. G. Flanner, S. Kang, S. Hou, and P. A. Mayewski. 2011. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860–2000 AD. Geophys. Res. Lett. 38 (4):L04703.
  • Kemppinen, O., J. C. Laning, R. D. Mersmann, G. Videen, and M. J. Berg. 2020. Imaging atmospheric aerosol particles from a UAV with digital holography. Sci. Rep. 10 (1):1–12.
  • Kemppinen, O., T. Nousiainen, S. Merikallio, and P. Räisänen. 2015. Retrieving microphysical properties of dust-like particles using ellipsoids: the case of refractive index. Atmos. Chem. Phys. 15 (19):11117–32.
  • Kobayashi, H., M. Hayashi, K. Shiraishi, Y. Nakura, T. Enomoto, K. Miura, H. Takahashi, Y. Igarashi, H. Naoe, and N. Kaneyasu. 2014. Development of a polarization optical particle counter capable of aerosol type classification. Atmos. Environ. 97:486–92. doi:10.1016/j.atmosenv.2014.05.006.
  • Kok, J. F., D. A. Ridley, Q. Zhou, R. L. Miller, C. Zhao, C. L. Heald, D. S. Ward, S. Albani, and K. Haustein. 2017. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 10 (4):274–8.
  • Koren, I., E. Ganor, and J. H. Joseph. 2001. On the relation between size and shape of desert dust aerosol. J. Geophys. Res. Atmosph. 106 (D16):18047–54.
  • Lambert, F., M. Bigler, J. P. Steffensen, M. Hutterli, and H. Fischer. 2012. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate Past. 8 (2):609–23.
  • Lee, S. Y., W. Widiyastuti, N. Tajima, F. Iskandar, and K. Okuyama. 2009. Measurement of the effective density of both spherical aggregated and ordered porous aerosol particles using mobility- and mass-analyzers. Aerosol Sci. Technol. 43 (2):136–44.
  • Liao, H, and J. H. Seinfeld. 1998. Radiative forcing by mineral dust aerosols: sensitivity to key variables. J. Geophys. Res. Atmosph. 103 (D24):31637–45.
  • Longtin, D. R. E. P. Shettle, J. R. Hummel, and J. D. Pryce. 1988. A wind dependent desert aerosol model: radiative properties. Optimetrics Inc., Burlington, MA.
  • Meng, Z., P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo. 2010. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci. 41 (5):501–12.
  • Miller, R. L., R. V. Cakmur, J. Perlwitz, I. V. Geogdzhayev, P. Ginoux, D. Koch, K. E. Kohfeld, C. Prigent, R. Ruedy, and G. A. Schmidt. 2006. Mineral dust aerosols in the NASA goddard institute for space sciences modele atmospheric general circulation model. J. Geophys. Res. Atmosph. 111 (D6):D06208.
  • Moosmüller, H., J. P. Engelbrecht, M. Skiba, G. Frey, R. K. Chakrabarty, and W. P. Arnott. 2012. Single scattering albedo of fine mineral dust aerosols controlled by iron concentration. J. Geophys. Res. Atmosph. 117 (D11):D11210.
  • Moteki, N. 2020. Capabilities and limitations of the single-particle extinction and scattering method for estimating the complex refractive index and size-distribution of spherical and non-spherical submicron particles. J. Quant. Spectrosc. Radiat. Transf. 243:106811. doi:10.1016/j.jqsrt.2019.106811.
  • Moteki, N. 2021. Measuring the complex forward-scattering amplitude of single particles by self-reference interferometry: CAS-v1 protocol. Opt. Express. 29 (13):20688–714. doi:10.1364/OE.423175.
  • Moteki, N, and Y. Kondo. 2010. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: measurements and theoretical interpretation. Aerosol Sci. Technol. 44 (8):663–75.
  • Moteki, N., Y. Kondo, N. Takegawa, and S. Nakamura. 2009. Directional dependence of thermal emission from nonspherical carbon particles. J. Aerosol Sci. 40 (9):790–801.
  • Muinonen, K, and T. Pieniluoma. 2011. Light scattering by Gaussian random ellipsoid particles: First results with discrete-dipole approximation. J. Quant. Spectrosc. Radiat. Transf. 112 (11):1747–52.
  • Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills. 2011. Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys. 11 (9):4191–207.
  • Nagatsuka, N., K. Goto-Azuma, A. Tsushima, K. Fujita, S. Matoba, Y. Onuma, R. Dallmayr, M. Kadota, M. Hirabayashi, and J. Ogata. 2021. Variations in mineralogy of dust in an ice core obtained from northwestern greenland over the past 100 years. Clim. Past 17 (3):1341–62.
  • Nishikawa, M., D. Batdorj, M. Ukachi, K. Onishi, K. Nagano, I. Mori, I. Matsui, and T. Sano. 2013. Preparation and chemical characterisation of an asian mineral dust certified reference material. Anal. Methods 5 (16):4088–95.
  • Okada, K., J. Heintzenberg, K. Kai, and Y. Qin. 2001. Shape of atmospheric mineral particles collected in three chinese arid-regions. Geophys. Res. Lett. 28 (16):3123–6.
  • Potenza, M. A. C., Ž. Krpetić, T. Sanvito, Q. Cai, M. Monopoli, J. M. de Araújo, C. Cella, L. Boselli, V. Castagnola, P. Milani, et al. 2017. Detecting the shape of anisotropic gold nanoparticles in dispersion with single particle extinction and scattering. Nanoscale 9 (8):2778–84.
  • Potenza, M. A., T. Sanvito, and A. Pullia. 2015. Measuring the complex field scattered by single submicron particles. AIP Adv. 5 (11):117222.
  • Querry, M. R. 1985. Optical constants, contractor report. US Army Chemical Research, Development and Engineering Center (CRDC), Aberdeen Proving Ground, MD, 418.
  • Ravasio, C., L. Cremonesi, C. Artoni, B. Delmonte, V. Maggi, and M. A. Potenza. 2021. Optical characterization of mineral dust from the EAIIST project with digital holography. ACS Earth Space Chem. 5 (10):2855–64.
  • Romanov, A. V, and M. A. Yurkin. 2021. Single-particle characterization by elastic light scattering. Laser Photon. Rev. 15 (2):2000368.
  • Ruth, U., D. Wagenbach, M. Bigler, J. P. Steffensen, R. Röthlisberger, and H. Miller. 2002. High-resolution microparticle profiles at NorthGRIP, Greenland: case studies of the calcium–dust relationship. Ann. Glaciol. 35:237–42.
  • Saito, M., P. Yang, J. Ding, and X. Liu. 2021. A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. J. Atmos. Sci. 78 (7):2089–111.
  • Satheesh, S. K, and K. K. Moorthy. 2005. Radiative effects of natural aerosols: a review. Atmos. Environ. 39 (11):2089–110.
  • Simonsen, M. F., L. Cremonesi, G. Baccolo, S. Bosch, B. Delmonte, T. Erhardt, H. A. Kjaer, M. Potenza, A. Svensson, and P. Vallelonga. 2018. Particle shape accounts for instrumental discrepancy in ice core dust size distributions. Clim. Past 14 (5):601–8.
  • Sokolik, IN., and O. B. Toon. 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381 (6584):681–3.
  • Sugimoto, N., I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima. 2002. Observation of dust and anthropogenic aerosol plumes in the northwest pacific with a two-wavelength polarization lidar on board the research vessel Mirai. Geophys. Res. Lett. 29 (19):7–1.
  • Taubenblatt, M. A, and J. S. Batchelder. 1991. Measurement of the size and refractive index of a small particle using the complex forward-scattered electromagnetic field. Appl. Opt. 30 (33):4972–9.
  • Villa, S., T. Sanvito, B. Paroli, A. Pullia, B. Delmonte, and M. A. C. Potenza. 2016. Measuring shape and size of micrometric particles from the analysis of the forward scattered field. J. Appl. Phys. 119 (22):224901.
  • Weber, R. J., D. Orsini, Y. Daun, Y.-N. Lee, P. J. Klotz, and F. Brechtel. 2001. A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Sci. Technol. 35 (3):718–27.
  • Weidler, P. G, and F. Friedrich. 2007. Determination of the refractive index of particles in the clay and sub-micrometer size range. Am. Mineral. 92 (7):1130–2.
  • Wex, H., S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, and N. Hiranuma. 2015. Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance. Atmos. Chem. Phys. 15 (3):1463–85.
  • Xu, R. 2015. Light scattering: a review of particle characterization applications. Particuology 18:11–21. doi:10.1016/j.partic.2014.05.002.
  • Zennaro, P., N. Kehrwald, J. R. McConnell, S. Schüpbach, O. J. Maselli, J. Marlon, P. Vallelonga, D. Leuenberger, R. Zangrando, and A. Spolaor. 2014. Fire in ice: two millennia of boreal forest fire history from the Greenland neem ice core. Clim. Past 10 (5):1905–24.
  • Zhang, X., J. Qiu, X. Li, J. Zhao, and L. Liu. 2020. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 59 (8):2337–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.