1,272
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Measuring size distributions of atmospheric aerosols using natural air ions

, & ORCID Icon
Pages 655-664 | Received 15 Nov 2021, Accepted 24 Mar 2022, Published online: 18 Apr 2022

References

  • Birmili, W., K. Weinhold, F. Rasch, A. Sonntag, J. Sun, M. Merkel, A. Wiedensohler, S. Bastian, A. Schladitz, G. Loschau, et al. 2016. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN). Earth Syst. Sci. Data 8 (2):355–82. doi:10.5194/essd-8-355-2016.
  • Cai, R. L., D. S. Yang, Y. Y. Fu, X. Wang, X. X. Li, Y. Ma, J. M. Hao, J. Zheng, and J. Jiang. 2017. Aerosol surface area concentration: a governing factor in new particle formation in Beijing. Atmos. Chem. Phys. 17 (20):12327–40. doi:10.5194/acp-17-12327-2017.
  • Chen, X. T., and J. Jiang. 2018. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications. Aerosol Sci. Technol. 52 (10):1145–55. doi:10.1080/02786826.2018.1498587.
  • Chen, X. T., P. H. McMurry, and J. Jiang. 2018. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers. Aerosol Sci. Technol. 52 (8):809–13. doi:10.1080/02786826.2018.1479058.
  • Deng, C. J., Y. Y. Fu, L. Dada, C. Yan, R. L. Cai, D. S. Yang, Y. Zhou, R. J. Yin, Y. Q. Lu, X. X. Li, et al. 2020. Seasonal characteristics of new particle formation and growth in urban Beijing. Environ. Sci. Technol. 54 (14):8547–57. doi:10.1021/acs.est.0c00808.
  • Ehn, M., H. Junninen, T. Petaja, T. Kurten, V. M. Kerminen, S. Schobesberger, H. E. Manninen, I. K. Ortega, H. Vehkamaki, M. Kulmala, et al. 2010. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10 (17):8513–30. doi:10.5194/acp-10-8513-2010.
  • Hagen, D. E., and D. J. Alofs. 1983. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Sci. Technol. 2 (4):465–75. doi:10.1080/02786828308958650.
  • Harrison, R. G. 2007. Electrical properties of surface atmospheric air at Eskdalemuir, 1909-1911. Atmos. Res. 84 (2):182–8. doi:10.1016/j.atmosres.2006.08.001.
  • Harrison, R. G., and H. Tammet. 2008. Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci. Rev. 137 (1-4):107–18. doi:10.1007/s11214-008-9356-x.
  • Hõrrak, U., J. Salm, and H. Tammet. 2000. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions. J. Geophys. Res. 105 (D7):9291–302. doi:10.1029/1999JD901197.
  • Iida, K., M. Stolzenburg, P. McMurry, M. J. Dunn, J. N. Smith, F. Eisele, and P. Keady. 2006. Contribution of ion-induced nucleation to new particle formation: methodology and its application to atmospheric observations in Boulder, Colorado. J. Geophys. Res. Atmos. 111:D23201.
  • Jiang, J., C. M. Kim, X. L. Wang, M. R. Stolzenburg, S. L. Kaufman, C. L. Qi, G. J. Sem, H. Sakurai, N. Hama, and P. H. McMurry. 2014. Aerosol charge fractions downstream of six bipolar chargers: effects of ion source, source activity, and flowrate. Aerosol Sci. Technol. 48 (12):1207–16. doi:10.1080/02786826.2014.976333.
  • Laakso, L., S. Gagne, T. Petaja, A. Hirsikko, P. P. Aalto, M. Kulmala, and V. M. Kerminen. 2007. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmos. Chem. Phys. 7 (5):1333–45. doi:10.5194/acp-7-1333-2007.
  • Li, X. X., Y. Y. Li, M. J. Lawler, J. M. Hao, J. N. Smith, and J. Jiang. 2021. Composition of ultrafine particles in urban Beijing: measurement using a thermal desorption chemical ionization mass spectrometer. Environ. Sci. Technol. 55 (5):2859–68. doi:10.1021/acs.est.0c06053.
  • Liu, B. Y. H., and D. Y. H. Pui. 1974. Electrical neutralization of aerosols. J. Aerosol Sci. 5 (5):465–72. doi:10.1016/0021-8502(74)90086-X.
  • Liu, J. Q., J. Jiang, Q. Zhang, J. G. Deng, and J. M. Hao. 2016. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 mu m. Front. Environ. Sci. Eng. 10 (1):63–72. doi:10.1007/s11783-014-0754-x.
  • Maißer, A., J. M. Thomas, C. Larriba-Andaluz, S. He, and C. J. Hogan. 2015. The mass-mobility distributions of ions produced by a Po-210 source in air. J. Aerosol Sci. 90:36–50. doi:10.1016/j.jaerosci.2015.08.004.
  • Qi, X. M., A. J. Ding, W. Nie, T. Petäjä, V.-M. Kerminen, E. Herrmann, Y. N. Xie, L. F. Zheng, H. Manninen, P. Aalto, et al. 2015. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmos. Chem. Phys. 15 (21):12445–64. doi:10.5194/acp-15-12445-2015.
  • Steiner, G., T. Jokinen, H. Junninen, M. Sipila, T. Petaja, D. Worsnop, G. P. Reischl, and M. Kulmala. 2014. High-resolution mobility and mass spectrometry of negative ions produced in a Am-241 aerosol charger. Aerosol Sci. Technol. 48 (3):261–70. doi:10.1080/02786826.2013.870327.
  • Tigges, L., A. Wiedensohler, K. Weinhold, J. Gandhi, and H. J. Schmid. 2015. Bipolar charge distribution of a soft X-ray diffusion charger. J. Aerosol Sci. 90:77–86. doi:10.1016/j.jaerosci.2015.07.002.
  • Vana, M., M. Ehn, T. Petaja, H. Vuollekoski, P. Aalto, G. de Leeuw, D. Ceburnis, C. D. O'Dowd, and M. Kulmala. 2008. Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmos. Res. 90 (2-4):278–86. doi:10.1016/j.atmosres.2008.04.007.
  • Wang, S. C., and R. C. Flagan. 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13 (2):230–40. doi:10.1080/02786829008959441.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge-distribution for particles in the sub-micron size range. J. Aerosol Sci. 19 (3):387–9. doi:10.1016/0021-8502(88)90278-9.
  • Wiedensohler, A., W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, et al. 2012. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 5 (3):657–85. doi:10.5194/amt-5-657-2012.
  • Wiedensohler, A., A. Wiesner, K. Weinhold, W. Birmili, M. Hermann, M. Merkel, T. Muller, S. Pfeifer, A. Schmidt, T. Tuch, et al. 2018. Mobility particle size spectrometers: calibration procedures and measurement uncertainties. Aerosol Sci. Technol. 52 (2):146–64. doi:10.1080/02786826.2017.1387229.
  • Yin, R. J., C. Yan, R. L. Cai, X. X. Li, J. W. Shen, Y. Q. Lu, S. Schobesberger, Y. Y. Fu, C. J. Deng, L. Wang, et al. 2021. Acid-base clusters during atmospheric new particle formation in urban Beijing. Environ. Sci. Technol. 55 (16):10994–1005. doi:10.1021/acs.est.1c02701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.