1,433
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Densities of internally mixed organic-inorganic particles from mobility diameter measurements of aerodynamically classified aerosols

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 688-710 | Received 20 Oct 2021, Accepted 30 Mar 2022, Published online: 28 Apr 2022

References

  • Allen, M. D., and O. G. Raabe. 1985. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Technol. 4 (3):269–86. doi:10.1080/02786828508959055.
  • Allen, M. D., and O. G. Raabe. 1982. Re-evaluation of Millikan’s oil drop data for the motion of small particles in air. J. Aerosol Sci. 13 (6):537–47. doi:10.1016/0021-8502(82)90019-2.
  • Ashcroft, S. J., D. R. Booker, and J. Turner. 1990. Density measurement by oscillating tube. Effects of viscosity, temperature, calibration and signal processing. Faraday Trans. 86 (1):145. doi:10.1039/ft9908600145.
  • Baldelli, A., and R. Vehring. 2016. Analysis of cohesion forces between monodisperse microparticles with rough surfaces. Colloids Surfaces A Physicochem. Eng. Asp. 506:179–89. doi:10.1016/j.colsurfa.2016.06.009.
  • Bannan, T. J., M. Le Breton, M. Priestley, S. D. Worrall, A. Bacak, N. A. Marsden, A. Mehra, J. Hammes, M. Hallquist, M. R. Alfarra, et al. 2019. A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application. Atmos. Meas. Tech. 12 (3):1429–39. doi:10.5194/amt-12-1429-2019.
  • Baxter, G. P., and C. C. Wallace. 1916. The densities and cubical coefficients of expansion of the halogen salts of sodium, potassium, rubidium and cesium. J. Am. Chem. Soc. 38 (2):259–66. doi:10.1021/ja02259a009.
  • Bennett, G. M., and J. L. Yuill. 1935. The crystal form of anhydrous citric acid. J. Chem. Soc. 1935 (130):130. doi:10.1039/jr9350000130.
  • Bilde, M., K. Barsanti, M. Booth, C. D. Cappa, N. M. Donahue, E. U. Emanuelsson, G. McFiggans, U. K. Krieger, C. Marcolli, D. Topping, et al. 2015. Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: From dicarboxylic acids to complex mixtures. Chem. Rev. 115 (10):4115–56. doi:10.1021/cr5005502.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30 (6):582–600. doi:10.1080/027868299304435.
  • Brockmann, J. E., and D. J. Rader. 1990. APS response to nonspherical particles and experimental determination of dynamic shape factor. Aerosol Sci. Technol. 13 (2):162–72. doi:10.1080/02786829008959434.
  • Bzdek, B. R., J. P. Reid, and M. I. Cotterell. 2020. Open questions on the physical properties of aerosols. Commun. Chem. 3 (1):105.
  • Cai, C., R. Miles, M. I. Cotterell, A. Marsh, G. Rovelli, A. Rickards, Y. Zhang, and J. P. Reid. 2016. Comparison of methods for predicting the compositional dependence of the density and refractive index of organic–Aqueous aerosols. J. Phys. Chem. A 120 (33):6604–17.
  • Cai, C., D. J. Stewart, J. P. Reid, Y. Zhang, P. Ohm, C. S. Dutcher, and S. L. Clegg. 2015. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers. J. Phys. Chem. A 119 (4):704–18. doi:10.1021/jp510525r.
  • Cappa, C. D., D. A. Lack, J. B. Burkholder, and A. R. Ravishankara. 2008. Bias in filter-based aerosol light absorption measurements due to organic aerosol loading: evidence from laboratory measurements. Aerosol Sci. Technol. 42 (12):1022–32. doi:10.1080/02786820802389285.
  • Choczynski, J. M., R. Kaur Kohli, C. S. Sheldon, C. L. Price, and J. F. Davies. 2021. A dual-droplet approach for measuring the hygroscopicity of aqueous aerosol. Atmos. Meas. Tech. 14 (7):5001–13. doi:10.5194/amt-14-5001-2021.
  • Clegg, S. L., and A. S. Wexler. 2011. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. the solutes H2SO4, HNO 3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C. J. Phys. Chem. A 115 (15):3393–460. doi:10.1021/jp108992a.
  • Cotterell, M. I., B. J. Mason, A. E. Carruthers, J. S. Walker, A. J. Orr-Ewing, and J. P. Reid. 2014. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap. Phys. Chem. Chem. Phys. 16 (5):2118–28.
  • Cotterell, M. I., K. Szpek, J. M. Haywood, and J. M. Langridge. 2020. Sensitivity and accuracy of refractive index retrievals from measured extinction and absorption cross sections for mobility-selected internally mixed light absorbing aerosols. Aerosol Sci. Technol. 54 (9):1034–57. doi:10.1080/02786826.2020.1757034.
  • Cotterell, M. I., R. E. Willoughby, B. R. Bzdek, A. J. Orr-Ewing, and J. P. Reid. 2017. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles. Atmos. Chem. Phys. 17 (16):9837–51. doi:10.5194/acp-17-9837-2017.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies-instrument inter-comparison-project overview. Aerosol Sci. Technol. 44 (8):592–611. doi:10.1080/02786826.2010.482113.
  • Davies, C. N. 1945. Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc. 57 (4):259–70.
  • Davies, N. W., M. I. Cotterell, C. Fox, K. Szpek, J. M. Haywood, and J. M. Langridge. 2018. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone. Atmos. Meas. Tech. 11 (4):2313–24. doi:10.5194/amt-11-2313-2018.
  • Davies, N. W., C. Fox, K. Szpek, M. I. Cotterell, J. W. Taylor, J. D. Allan, P. I. Williams, J. Trembath, J. M. Haywood, and J. M. Langridge. 2019. Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmos. Meas. Tech. 12 (6):3417–34. doi:10.5194/amt-12-3417-2019.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 38 (12):1185–205. doi:10.1080/027868290903907.
  • Edwards, D. A., A. Ben-Jebria, and R. Langer. 1998. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. (1985) 85 (2):379–85.
  • Edwards, D. A., Hanes, J. Caponetti, G. Hrkach, J. Ben-Jebria, A. Eskew, M. Lou, Mintzes, J. Deaver, D. Lotan, N. Langer, R, et al. 1997. Large porous particles for pulmonary drug delivery. Science 276 (5320):1868–71. doi:10.1126/science.276.5320.1868.
  • Edwards, J. M., and A. Slingo. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. QJ. R. Met. Soc. 122 (531):689–719. doi:10.1002/qj.49712253107.
  • Eggersdorfer, M. L., A. J. Gröhn, C. M. Sorensen, P. H. McMurry, and S. E. Pratsinis. 2012. Mass-mobility characterization of flame-made ZrO 2 aerosols: Primary particle diameter and extent of aggregation. J. Colloid Interface Sci. 387 (1):12–23.
  • Hardy, D. A., J. Archer, P. Lemaitre, R. Vehring, J. P. Reid, and J. S. Walker. 2021. High time resolution measurements of droplet evaporation kinetics and particle crystallisation. Phys. Chem. Chem. Phys. 23 (34):18568–79. doi:10.1039/D1CP02840E.
  • Hasenkopf, C. A., M. R. Beaver, M. G. Trainer, H. Langley Dewitt, M. A. Freedman, O. B. Toon, C. P. McKay, and M. A. Tolbert. 2010. Optical properties of Titan and early Earth haze laboratory analogs in the mid-visible. Icarus 207 (2):903–13. doi:10.1016/j.icarus.2009.12.015.
  • Haywood, J. M., S. J. Abel, P. A. Barrett, N. Bellouin, A. Blyth, K. N. Bower, M. Brooks, K. Carslaw, H. Che, H. Coe, et al. 2021. The cloud – Aerosol – Radiation interaction and forcing : Year 2017 (CLARIFY-2017) measurement campaign. Atmos. Chem. Phys. 21 (1):1049–84.
  • Hinds, W. C. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd ed. New York: Wiley.
  • Hu, D., M. R. Alfarra, K. Szpek, J. Langridge, M. Cotterell, C. Belcher, I. Rule, Z. Liu, C. Yu, Y. Shao, et al. 2021. Physical and chemical properties of black carbon and organic matter from different sources using aerodynamic aerosol classification. Atmos. Chem. Phys. 21 (21): 1–50. doi:10.5194/acp-21-16161-2021.
  • Johnson, T. J., M. Irwin, J. Symonds, J. S. Olfert, and A. M. Boies. 2018. Measuring aerosol size distributions with the aerodynamic aerosol classifier. Aerosol Sci. Technol. 52 (6):655–65. doi:10.1080/02786826.2018.1440063.
  • Johnson, T. J., R. T. Nishida, M. Irwin, J. Symonds, J. S. Olfert, and A. M. Boies. 2020. Measuring the bipolar charge distribution of nanoparticles: Review of methodologies and development using the Aerodynamic Aerosol Classifier. J. Aerosol Sci. 143:105526. (doi:10.1016/j.jaerosci.2020.105526.
  • Johnston, H. L., and D. A. Hutchison. 1942. Density of sodium chloride – The atomic weight of fluorine by combination of crystal density and X-ray data. Phys. Rev. 62 (1-2):32–6. doi:10.1103/PhysRev.62.32.
  • Johnston, J., and L. H. Adams. 1912. On the density of solid substances with especial reference to permanent changes produced by high pressures. J. Am. Chem. Soc. 34 (5):563–84. doi:10.1021/ja02206a001.
  • Kim, J. H., G. W. Mulholland, S. R. Kukuck, and D. Pui. 2005. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110 (1):31–54.
  • Kinney, P. D., D. Pui, G. W. Mulholland, and N. P. Bryner. 1991. Use of the electrostatic classification method to size 0.1 micrometer SRM particles – A feasibility study. J. Res. Natl. Inst. Stan. 96 (2):147. doi:10.6028/jres.096.006.
  • Kracek, F. C. 1931. Gradual transition in sodium nitrate. I. physico-chemical criteria of the transition. J. Am. Chem. Soc. 53 (7):2609–24. doi:10.1021/ja01358a022.
  • Krieger, U. K., C. Marcolli, and J. P. Reid. 2012. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 41 (19):6631–62.
  • Krieger, U. K., F. Siegrist, C. Marcolli, E. U. Emanuelsson, F. M. Gøbel, M. Bilde, A. Marsh, J. P. Reid, A. J. Huisman, I. Riipinen, et al. 2018. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols. Atmos. Meas. Tech. 11 (1):49–63. doi:10.5194/amt-11-49-2018.
  • Kuramoto, N., K. Fujii, and A. Waseda. 2004. Accurate density measurements of reference liquids by a magnetic suspension balance. Metrologia 41 (2):S84–S94. doi:10.1088/0026-1394/41/2/S09.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 40 (9):697–708. doi:10.1080/02786820600803917.
  • Lafontaine, A., M. Sanselme, Y. Cartigny, P. Cardinael, and G. Coquerel. 2013. Characterization of the transition between the monohydrate and the anhydrous citric acid. J. Therm. Anal. Calorim. 112 (1):307–15. doi:10.1007/s10973-012-2798-0.
  • Langridge, J. M., M. S. Richardson, D. A. Lack, and D. M. Murphy. 2016. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water. Geophys. Res. Lett. 43 (12):6650–6. doi:10.1002/2016GL069328.
  • Leppä, J., W. Mui, A. M. Grantz, and R. C. Flagan. 2017. Charge distribution uncertainty in differential mobility analysis of aerosols. Aerosol Sci. Technol. 51 (10):1168–89. doi:10.1080/02786826.2017.1341039.
  • Lienhard, D. M., D. L. Bones, A. Zuend, U. K. Krieger, J. P. Reid, and T. Peter. 2012. Measurements of thermodynamic and optical properties of selected aqueous organic and organic–inorganic mixtures of atmospheric relevance. J. Phys. Chem. A 116 (40):9954–68.
  • Liu, Y., and P. H. Daum. 2008. Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols. J. Aerosol Sci. 39 (11):974–86. doi:10.1016/j.jaerosci.2008.06.006.
  • Logozzo, A., and T. C. Preston. 2021. Temperature-controlled dual-beam optical trap for single particle studies of organic aerosol. J. Phys. Chem. A. 126:109–118.
  • Marshall, F. H., R. Miles, Y.-C. Song, P. B. Ohm, R. M. Power, J. P. Reid, and C. S. Dutcher. 2016. Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity. Chem. Sci. 7 (2):1298–308.
  • Mason, B. J., M. I. Cotterell, T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2015. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles. J. Phys. Chem. A 119 (22):5701–13.
  • McMurry, P. H., X. Wang, K. Park, and K. Ehara. 2002. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Technol. 36 (2):227–38. doi:10.1080/027868202753504083.
  • Moteki, N., Y. Kondo, T. Nakayama, K. Kita, L. K. Sahu, T. Ishigai, T. Kinase, and Y. Matsumi. 2010. Radiative transfer modeling of filter-based measurements of light absorption by particles: Importance of particle size dependent penetration depth. J. Aerosol Sci. 41 (4):401–12. doi:10.1016/j.jaerosci.2010.02.002.
  • Murphy, D. M., D. J. Cziczo, K. D. Froyd, P. K. Hudson, B. M. Matthew, A. M. Middlebrook, R. E. Peltier, A. Sullivan, D. S. Thomson, and R. J. Weber. 2006. Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. 111 (D23):1–15. doi:10.1029/2006JD007340.
  • Murray, B. J. 2008. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atmos. Chem. Phys. 8 (17):5423–33. doi:10.5194/acp-8-5423-2008.
  • Okaya, Y., K. Vedam, and R. Pepinsky. 1958. Non-isomorphism of ferroelectric phases of ammonium sulfate and ammonium fluoberyllate. Acta Cryst. 11 (4):307– doi:10.1107/S0365110X58000803.
  • Olfert, J., and S. Rogak. 2019. Universal relations between soot effective density and primary particle size for common combustion sources. Aerosol Sci. Technol. 53 (5):485–92. doi:10.1080/02786826.2019.1577949.
  • Pagels, J., A. F. Khalizov, P. H. McMurry, and R. Y. Zhang. 2009. Processing of soot by controlled sulphuric acid and water condensation—Mass and mobility relationship. Aerosol Sci. Technol. 43 (7):629–40. doi:10.1080/02786820902810685.
  • Peng, L., Z. Li, G. Zhang, X. Bi, W. Hu, M. Tang, X. Wang, P. Peng, and G. Sheng. 2021. A review of measurement techniques for aerosol effective density. Sci. Total Environ. 778:146248.
  • Pistone, K., J. Redemann, S. Doherty, P. Zuidema, S. Burton, B. Cairns, S. Cochrane, R. Ferrare, C. Flynn, S. Freitag, et al. 2019. Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016. Atmos. Chem. Phys. 19 (14):9181–208. doi:10.5194/acp-19-9181-2019.
  • Pokhrel, R. P., J. Gordon, M. N. Fiddler, and S. Bililign. 2021. Impact of combustion conditions on physical and morphological properties of biomass burning aerosol. Aerosol Sci. Technol. 55 (1):80–91. doi:10.1080/02786826.2020.1822512.
  • Pusz, S., M. Krzesińska, Ł. Smędowski, J. Majewska, B. Pilawa, and B. Kwiecińska. 2010. Changes in a coke structure due to reaction with carbon dioxide. Int. J. Coal Geol 81 (4):287–92. doi:10.1016/j.coal.2009.07.013.
  • Radney, J. G., and C. D. Zangmeister. 2018. Comparing aerosol refractive indices retrieved from full distribution and size- and mass-selected measurements. J. Quant. Spectrosc. Radiat. Transf. 220:52–66. doi:10.1016/j.jqsrt.2018.08.021.
  • Radney, J. G., and C. D. Zangmeister. 2015. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy. Anal. Chem. 87 (14):7356–63. doi:10.1021/acs.analchem.5b01541.
  • Ray, A. K., R. D. Johnson, and A. Souyri. 1989. Dynamic behavior of single glycerol droplets in humid air streams. Langmuir 5 (1):133–40. doi:10.1021/la00085a024.
  • Redemann, J., R. Wood, P. Zuidema, S. J. Doherty, B. Luna, S. E. LeBlanc, M. S. Diamond, Y. Shinozuka, I. Y. Chang, R. Ueyama, et al. 2021. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 21 (3):1507–63. doi:10.5194/acp-21-1507-2021.
  • Redlich, O., and A. T. Kister. 1948. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40 (2):345–8. doi:10.1021/ie50458a036.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi:10.1029/2018RG000615.
  • Robie, R., P. Bethke, and K. Beardsley. 1967. Selected X-ray crystallographic data, molar volumes, and densities of minerals and related substances. US Geol. Surv. Bull. (1248):1–87. doi:10.3133/b1248.
  • Rodríguez, G. A., A. R. Holguín, F. Martínez, M. Khoubnasabjafari, and A. Jouyban. 2012. Volumetric properties of (PEG 400 + water) and (PEG 400 + ethanol) mixtures at several temperatures and correlation with the Jouyban-Acree model. Rev. Colomb. Ciencias Químico – Farm 41:187–202.
  • Sedlacek, A., and J. Lee. 2007. Photothermal interferometric aerosol absorption spectrometry. Aerosol Sci. Technol. 41 (12):1089–101. doi:10.1080/02786820701697812.
  • Sequeira, M., M. Pereira, H. Avelino, F. Caetano, and J. Fareleira. 2019. Viscosity measurements of poly(ethyleneglycol) 400 [PEG 400] at temperatures from 293 K to 348 K and at pressures up to 50 MPa using the vibrating wire technique. Fluid Phase Equilib. 496:7–16. doi:10.1016/j.fluid.2019.05.012.
  • Singh, T., A. Kumar, M. Kaur, G. Kaur, and H. Kumar. 2009. Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 41 (6):717–23. doi:10.1016/j.jct.2008.12.002.
  • Sonnergaard, J. 2000. Impact of particle density and initial volume on mathematical compression models. Eur. J. Pharm. Sci. 11 (4):307–15.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–32. doi:10.1080/02786820802157823.
  • Swanson, H. E., N. T. Gilfrich, and M. Cook. 1956. Standard X-ray diffraction powder patterns. Natl. Bur. Stand. Circ. 6 (539):1–68. doi:10.6028/NBS.CIRC.539v6.
  • Tang, IN., and H. R. Munkelwitz. 1994. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99 (D9):18801. doi:10.1029/94JD01345.
  • Tang, IN., A. C. Tridico, and K. H. Fung. 1997. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. 102 (D19):23269–75. doi:10.1029/97JD01806.
  • Tavakoli, F., and J. S. Olfert. 2014. Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J. Aerosol Sci. 75:35–42. doi:10.1016/j.jaerosci.2014.04.010.
  • Tavakoli, F., and J. S. Olfert. 2013. An instrument for the classification of aerosols by particle relaxation time: Theoretical models of the aerodynamic aerosol classifier. Aerosol Sci. Technol 47 (8):916–26. doi:10.1080/02786826.2013.802761.
  • Tavakoli, F., J. Symonds, and J. S. Olfert. 2014. Generation of a monodisperse size-classified aerosol independent of particle charge. Aerosol Sci. Technol. 48 (3):i–iv. doi:10.1080/02786826.2013.877121.
  • Taylor, J. W., H. Wu, K. Szpek, K. Bower, I. Crawford, M. J. Flynn, P. I. Williams, J. Dorsey, J. M. Langridge, M. I. Cotterell, et al. 2020. Absorption closure in highly aged biomass burning smoke. Atmos. Chem. Phys. 20 (19):11201–21. doi:10.5194/acp-20-11201-2020.
  • Tigges, L., A. Jain, and H. J. Schmid. 2015a. On the bipolar charge distribution used for mobility particle sizing: Theoretical considerations. J. Aerosol Sci. 88:119–34. doi:10.1016/j.jaerosci.2015.05.010.
  • Tigges, L., A. Wiedensohler, K. Weinhold, J. Gandhi, and H. J. Schmid. 2015b. Bipolar charge distribution of a soft X-ray diffusion charger. J. Aerosol Sci. 90:77–86. doi:10.1016/j.jaerosci.2015.07.002.
  • Tutton, A. 1906. Ammonium selenate and the question of isodimorphism in the alkali series. J. Chem. Soc. Trans. 89 (0):1059–83. doi:10.1039/CT9068901059.
  • Wagner, W., and R. Kleinrahm. 2004. Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density. Metrologia 41 (2):S24–S39. doi:10.1088/0026-1394/41/2/S03.
  • Walker, J. S., J. Archer, F. Gregson, S. Michel, B. R. Bzdek, and J. P. Reid. 2021. Accurate representations of the microphysical processes occurring during the transport of exhaled aerosols and droplets. ACS Cent. Sci. 7 (1):200–9. doi:10.1021/acscentsci.0c01522.
  • Wang, B., and A. Laskin. 2014. Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: Recycling of nitric acid and formation of organic salts. J. Geophys. Res. Atmos. 119 (6):3335–51. doi:10.1002/2013JD021169.
  • Wiegand, J. R., L. D. Mathews, and G. D. Smith. 2014. A UV-vis photoacoustic spectrophotometer. Anal. Chem. 86 (12):6049–56.
  • Wu, H., J. W. Taylor, J. M. Langridge, C. Yu, J. D. Allan, K. Szpek, M. I. Cotterell, P. I. Williams, M. Flynn, P. Barker, et al. 2021. Rapid transformation of ambient absorbing aerosols from West African biomass burning. Atmos. Chem. Phys. 21 (12):9417–40. doi:10.5194/acp-21-9417-2021.
  • Zardini, A. A., I. Riipinen, I. K. Koponen, M. Kulmala, and M. Bilde. 2010. Evaporation of ternary inorganic/organic aqueous droplets: Sodium chloride, succinic acid and water. J. Aerosol Sci. 41 (8):760–70. doi:10.1016/j.jaerosci.2010.05.003.
  • Zelenyuk, A., Y. Cai, and D. Imre. 2006. From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci. Technol. 40 (3):197–217. doi:10.1080/02786820500529406.