471
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of the VACES particle concentrator on secondary organic aerosol and ambient particle composition

ORCID Icon, , , , , ORCID Icon & show all
Pages 785-801 | Received 24 Jan 2022, Accepted 10 May 2022, Published online: 28 Jun 2022

References

  • Alfarra, M. R., H. Coe, J. D. Allan, K. N. Bower, H. Boudries, M. R. Canagaratna, J. L. Jimenez, J. T. Jayne, A. A. Garforth, S.-M. Li, et al. 2004. Characterization of urban and rural organic particulate in the lower fraser valley using two aerodyne aerosol mass spectrometers. Atmos. Environ. 38 (34):5745–58. doi:10.1016/j.atmosenv.2004.01.054.
  • Allan, J. D., K. N. Bower, H. Coe, H. Boudries, J. T. Jayne, M. R. Canagaratna, D. B. Millet, A. H. Goldstein, P. K. Quinn, R. J. Weber, et al. 2004. Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. J. Geophys. Res.: Atmos. 109:D23S24. doi:10.1029/2003JD004208.
  • Apte, J. S., M. Brauer, A. J. Cohen, M. Ezzati, and C. A. Pope. 2018. Ambient PM2.5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett. 5 (9):546–51. doi:10.1021/acs.estlett.8b00360.
  • Araujo, J. A., B. Barajas, M. Kleinman, X. Wang, B. J. Bennett, K. W. Gong, M. Navab, J. Harkema, C. Sioutas, A. J. Lusis, et al. 2008. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res. 102 (5):589–96. doi:10.1161/CIRCRESAHA.107.164970.
  • Baltensperger, U., J. Dommen, M. R. Alfarra, J. Duplissy, K. Gaeggeler, A. Metzger, M. C. Facchini, S. Decesari, E. Finessi, C. Reinnig, et al. 2008. Combined determination of the chemical composition and of health effects of secondary organic aerosols: The polysoa project. J. Aerosol Med. Pulm. Drug Deliv. 21 (1):145–54. doi:10.1089/jamp.2007.0655.
  • Banerjee, S., E. Gnanamani, X. Yan, and R. N. Zare. 2017. Can all bulk-phase reactions be accelerated in microdroplets? Analyst 142 (9):1399–402. doi:10.1039/C6AN02225A.
  • Barsanti, K. C., and J. F. Pankow. 2004. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—part 1: Aldehydes and ketones. Atmos. Environ. 38 (26):4371–82. doi:10.1016/j.atmosenv.2004.03.035.
  • Barsanti, K. C., and J. F. Pankow. 2005. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—part 2. Dialdehydes, methylglyoxal, and diketones. Atmos. Environ. 39 (35):6597–607. doi:10.1016/j.atmosenv.2005.07.056.
  • Barsanti, K. C., and J. F. Pankow. 2006. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—part 3: Carboxylic and dicarboxylic acids. Atmos. Environ. 40 (34):6676–86. doi:10.1016/j.atmosenv.2006.03.013.
  • Bourdrel, T., M.-A. Bind, Y. Béjot, O. Morel, and J.-F. Argacha. 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11):634–42. doi:10.1016/j.acvd.2017.05.003.
  • Brown, D. M., M. R. Wilson, W. MacNee, V. Stone, and K. Donaldson. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175 (3):191–9. doi:10.1006/taap.2001.9240.
  • Canagaratna, M. R., J. L. Jimenez, J. H. Kroll, Q. Chen, S. H. Kessler, P. Massoli, L. Hildebrandt Ruiz, E. Fortner, L. R. Williams, K. R. Wilson, et al. 2015. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications. Atmos. Chem. Phys. 15 (1):253–72. doi:10.5194/acp-15-253-2015.
  • Chen, Q., C. L. Heald, J. L. Jimenez, M. R. Canagaratna, Q. Zhang, L.-Y. He, X.-F. Huang, P. Campuzano-Jost, B. B. Palm, L. Poulain, et al. 2015. Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophys. Res. Lett. 42 (10):4182–9. doi:10.1002/2015GL063693.
  • Cho, A. K., C. Sioutas, A. H. Miguel, Y. Kumagai, D. A. Schmitz, M. Singh, A. Eiguren-Fernandez, and J. R. Froines. 2005. Redox activity of airborne particulate matter at different sites in the Los Angeles basin. Environ. Res. 99 (1):40–7. doi:10.1016/j.envres.2005.01.003.
  • Corrigan, A. L., S. W. Hanley, and D. O. De Haan. 2008. Uptake of glyoxal by organic and inorganic aerosol. Environ. Sci. Technol. 42 (12):4428–33. doi:10.1021/es7032394.
  • De Haan, D. O., A. L. Corrigan, M. A. Tolbert, J. L. Jimenez, S. E. Wood, and J. J. Turley. 2009. Secondary organic aerosol formation by self-reactions of methylglyoxal and glyoxal in evaporating droplets. Environ. Sci. Technol. 43 (21):8184–90. doi:10.1021/es902152t.
  • DeCarlo, P. F., J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, et al. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78 (24):8281–9. doi:10.1021/ac061249n.
  • Delfino, R. J., C. Sioutas, and S. Malik. 2005. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. Health Perspect. 113 (8):934–46. doi:10.1289/ehp.7938.
  • Demokritou, P., T. Gupta, and P. Koutrakis. 2002. A high volume apparatus for the condensational growth of ultrafine particles for inhalation toxicological studies. Aerosol Sci. Technol. 36 (11):1061–72. doi:10.1080/02786820290092230.
  • Docherty, K. S., M. Jaoui, E. Corse, J. L. Jimenez, J. H. Offenberg, M. Lewandowski, and T. E. Kleindienst. 2013. Collection efficiency of the aerosol mass spectrometer for chamber-generated secondary organic aerosols. Aerosol Sci. Technol. 47 (3):294–309. doi:10.1080/02786826.2012.752572.
  • Docherty, K. S., E. A. Stone, I. M. Ulbrich, P. F. DeCarlo, D. C. Snyder, J. J. Schauer, R. E. Peltier, R. J. Weber, S. M. Murphy, J. H. Seinfeld, et al. 2008. Apportionment of primary and secondary organic aerosols in Southern California during the 2005 study of organic aerosols in riverside (soar-1). Environ. Sci. Technol. 42 (20):7655–62. doi:10.1021/es8008166.
  • Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer. 1993. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329 (24):1753–9. doi:10.1056/nejm199312093292401.
  • Drewnick, F., J. T. Jayne, M. Canagaratna, D. R. Worsnop, and K. L. Demerjian. 2004. Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: Chemically speciated mass distributions special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 38 (sup1):104–17. doi:10.1080/02786820390229534.
  • Fick, J., C. Nilsson, and B. Andersson. 2004. Formation of oxidation products in a ventilation system. Atmos. Environ. 38 (35):5895–9. doi:10.1016/j.atmosenv.2004.08.020.
  • Fick, J., L. Pommer, C. Nilsson, and B. Andersson. 2003. Effect of oh radicals, relative humidity, and time on the composition of the products formed in the ozonolysis of α-pinene. Atmos. Environ. 37 (29):4087–96. doi:10.1016/S1352-2310(03)00522-3.
  • Finlayson-Pitts, B. J., and J. N. Pitts. 2000. Chemistry of the upper and lower atmosphere: Theory, experiments, and applications. San Diego: Academic Press.
  • Freney, E. J., M. R. Heal, R. J. Donovan, N. L. Mills, K. Donaldson, D. E. Newby, P. H. Fokkens, and F. R. Cassee. 2006. A single-particle characterization of a mobile versatile aerosol concentration enrichment system for exposure studies. Part. Fibre Toxicol. 3:8. doi:10.1186/1743-8977-3-8.
  • Gao, S., M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan, and J. H. Seinfeld. 2004. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene. J. Phys. Chem. A 108 (46):10147–64. doi:10.1021/jp047466e.
  • Gaschen, A., D. Lang, M. Kalberer, M. Savi, T. Geiser, A. Gazdhar, C. M. Lehr, M. Bur, J. Dommen, U. Baltensperger, et al. 2010. Cellular responses after exposure of lung cell cultures to secondary organic aerosol particles. Environ. Sci. Technol. 44 (4):1424–30. doi:10.1021/es902261m.
  • Gaston, C. J., P. K. Quinn, T. S. Bates, J. B. Gilman, D. M. Bon, W. C. Kuster, and K. A. Prather. 2013. The impact of shipping, agricultural, and urban emissions on single particle chemistry observed aboard the R/V Atlantis during CalNex. J. Geophys. Res. Atmos. 118 (10):5003–17. doi:10.1002/jgrd.50427.
  • Ge, X., A. S. Wexler, and S. L. Clegg. 2011. Atmospheric amines – Part I. A review. Atmos. Environ. 45 (3):524–46. doi:10.1016/j.atmosenv.2010.10.012.
  • Geller, M. D., S. Kim, C. Misra, C. Sioutas, B. A. Olson, and V. A. Marple. 2002. A methodology for measuring size-dependent chemical composition of ultrafine particles. Aeros. Sci. Technol. 36 (6):748–62. doi:10.1080/02786820290038447.
  • Gupta, T., P. Demokritou, and P. Koutrakis. 2004. Development and performance evaluation of a high-volume ultrafine particle concentrator for inhalation toxicological studies. Inhal. Toxicol. 16 (13):851–62. doi:10.1080/08958370490506664.
  • Gute, E., L. Lacher, Z. A. Kanji, R. Kohl, J. Curtius, D. Weber, H. Bingemer, H.-C. Clemen, J. Schneider, M. Gysel-Beer, et al. 2019. Field evaluation of a portable fine particle concentrator (PFPC) for ice nucleating particle measurements. Aeros. Sci. Technol. 53 (9):1067–78. doi:10.1080/02786826.2019.1626346.
  • Hall, W. A., and M. V. Johnston. 2012. Oligomer formation pathways in secondary organic aerosol from MS and MS/MS measurements with high mass accuracy and resolving power. J. Am. Soc. Mass Spectrom. 23 (6):1097–108. doi:10.1007/s13361-012-0362-6.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, A. Eiguren-Fernandez, N. M. Kreisberg, C. Kuang, and M. Attoui. 2017. Detection near 1-nm with a laminar-flow, water-based condensation particle counter. Aerosol Sci. Technol. 51 (3):354–62. doi:10.1080/02786826.2016.1262531.
  • Hering, S. V., S. R. Spielman, and G. S. Lewis. 2014. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48 (4):401–8. doi:10.1080/02786826.2014.881460.
  • Hering, S. V., and M. R. Stolzenburg. 2005. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 39 (5):428–36. doi:10.1080/027868290953416.
  • Herman, D. A., L. M. Wingen, R. M. Johnson, A. J. Keebaugh, S. R. Renusch, I. Hasen, A. Ting, and M. T. Kleinman. 2020. Seasonal effects of ambient PM2.5 on the cardiovascular system of hyperlipidemic mice. J. Air Waste Manag. Assoc. 70 (3):307–23. doi:10.1080/10962247.2020.1717674.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: Wiley.
  • Hwang, B., T. Fang, R. Pham, J. Wei, S. Gronstal, B. Lopez, C. Frederickson, T. Galeazzo, X. Wang, H. Jung, et al. 2021. Environmentally persistent free radicals, reactive oxygen species generation, and oxidative potential of highway PM2.5. ACS Earth Space Chem. 5 (8):1865–75. doi:10.1021/acsearthspacechem.1c00135.
  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–9. doi:10.1126/science.1180353.
  • Jung, H., C. Arellanes, Y. Zhao, S. Paulson, C. Anastasio, and A. Wexler. 2010. Impact of the versatile aerosol concentration enrichment system (VACES) on gas phase species. Aerosol Sci. Technol. 44 (12):1113–21. doi:10.1080/02786826.2010.512028.
  • Kangasluoma, J., and M. Attoui. 2019. Review of sub-3 nm condensation particle counters, calibrations, and cluster generation methods. Aerosol Sci. Technol. 53 (11):1277–310. doi:10.1080/02786826.2019.1654084.
  • Keebaugh, A. J., C. Sioutas, P. Pakbin, J. J. Schauer, L. B. Mendez, and M. T. Kleinman. 2015. Is atherosclerotic disease associated with organic components of ambient fine particles? Sci. Total Environ. 533:69–75. doi:10.1016/j.scitotenv.2015.06.048.
  • Khlystov, A., Q. Zhang, J. L. Jimenez, C. Stanier, S. N. Pandis, M. R. Canagaratna, P. Fine, C. Misra, and C. Sioutas. 2005. In situ concentration of semi-volatile aerosol using water-condensation technology. J. Aerosol Sci. 36 (7):866–80. doi:10.1016/j.jaerosci.2004.11.005.
  • Kidd, C., V. Perraud, and B. J. Finlayson-Pitts. 2014. Surfactant-free latex spheres for size calibration of mobility particle sizers in atmospheric aerosol applications. Atmos. Environ. 82:56–9. doi:10.1016/j.atmosenv.2013.09.056.
  • Kilian, J., and M. Kitazawa. 2018. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease - Evidence from epidemiological and animal studies. Biomed. J. 41 (3):141–62. doi:10.1016/j.bj.2018.06.001.
  • Kim, S., P. A. Jaques, M. Chang, T. Barone, C. Xiong, S. K. Friedlander, and C. Sioutas. 2001a. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles part II: Field evaluation. J. Aerosol Sci. 32 (11):1299–314. doi:10.1016/S0021-8502(01)00058-1.
  • Kim, S., P. A. Jaques, M. Chang, J. R. Froines, and C. Sioutas. 2001b. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles part I: Development and laboratory characterization. J. Aerosol Sci. 32 (11):1281–97. doi:10.1016/S0021-8502(01)00057-X.
  • Kleinman, M. T., L. M. Wingen, D. A. Herman, R. Johnson, and A. Keebaugh. 2018. Can reactions between ozone and organic constituents of ambient particulate matter influence effects on the cardiovascular system? In Multiphase environmental chemistry in the atmosphere, 439–58. Washington, DC: American Chemical Society.
  • Kourtchev, I., C. Giorio, A. Manninen, E. Wilson, B. Mahon, J. Aalto, M. Kajos, D. Venables, T. Ruuskanen, J. Levula, et al. 2016. Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Sci. Rep. 6:35038. doi:10.1038/srep35038.
  • Krapf, M., L. Künzi, S. Allenbach, E. A. Bruns, I. Gavarini, I. El-Haddad, J. G. Slowik, A. S. H. Prévôt, L. Drinovec, G. Močnik, et al. 2017. Wood combustion particles induce adverse effects to normal and diseased airway epithelia. Environ. Sci. Process. Impacts. 19 (4):538–48. doi:10.1039/C6EM00586A.
  • Kristensen, K., T. Cui, H. Zhang, A. Gold, M. Glasius, and J. D. Surratt. 2014. Dimers in α-pinene secondary organic aerosol: Effect of hydroxyl radical, ozone, relative humidity and aerosol acidity. Atmos. Chem. Phys. 14 (8):4201–18. doi:10.5194/acp-14-4201-2014.
  • Kristensen, K., Å. K. Watne, J. Hammes, A. Lutz, T. Petäjä, M. Hallquist, M. Bilde, and M. Glasius. 2016. High-molecular weight dimer esters are major products in aerosols from α-pinene ozonolysis and the boreal forest. Environ. Sci. Technol. Lett. 3 (8):280–5. doi:10.1021/acs.estlett.6b00152.
  • Krizner, H. E., D. O. De Haan, and J. Kua. 2009. Thermodynamics and kinetics of methylglyoxal dimer formation: A computational study. J. Phys. Chem. A 113 (25):6994–7001. doi:10.1021/jp903213k.
  • Kroll, J. H., N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, et al. 2011. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 3 (2):133–9. doi:10.1038/nchem.948.
  • Kroll, J. H., and J. H. Seinfeld. 2008. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42 (16):3593–624. doi:10.1016/j.atmosenv.2008.01.003.
  • Laden, F., J. Schwartz, F. E. Speizer, and D. W. Dockery. 2006. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 173 (6):667–72. doi:10.1164/rccm.200503-443OC.
  • Lawrence, J., J. M. Wolfson, S. Ferguson, P. Koutrakis, and J. Godleski. 2004. Performance stability of the Harvard ambient particle concentrator. Aerosol Sci. Technol. 38 (3):219–27. doi:10.1080/02786820490261735.
  • Lepistö, T., H. Kuuluvainen, P. Juuti, A. Järvinen, A. Arffman, and T. Rönkkö. 2020. Measurement of the human respiratory tract deposited surface area of particles with an electrical low pressure impactor. Aerosol Sci. Technol. 54 (8):958–71. doi:10.1080/02786826.2020.1745141.
  • Li, N., C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, and A. Nel. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111 (4):455–60. doi:10.1289/ehp.6000.
  • Lippmann, M., and L.-C. Chen. 2009. Health effects of concentrated ambient air particulate matter (caps) and its components. Crit. Rev. Toxicol. 39 (10):865–913. doi:10.3109/10408440903300080.
  • Loeffler, K. W., C. A. Koehler, N. M. Paul, and D. O. De Haan. 2006. Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environ. Sci. Technol. 40 (20):6318–23. doi:10.1021/es060810w.
  • Maciejczyk, P., M. Zhong, Q. Li, J. Xiong, C. Nadziejko, and L. C. Chen. 2005. Effects of subchronic exposures to concentrated ambient particles (caps) in mice. II. The design of a caps exposure system for biometric telemetry monitoring. Inhal. Toxicol. 17 (4–5):189–97. doi:10.1080/08958370590912743.
  • Matthew, B. M., A. M. Middlebrook, and T. B. Onasch. 2008. Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Technol. 42 (11):884–98. doi:10.1080/02786820802356797.
  • McFiggans, G., M. R. Alfarra, J. Allan, K. Bower, H. Coe, M. Cubison, D. Topping, P. Williams, S. Decesari, C. Facchini, et al. 2005. Simplification of the representation of the organic component of atmospheric particulates. Faraday Discuss. 130:341–62. doi:10.1039/B419435G.
  • McGraw, R., J. Wang, and C. Kuang. 2012. Kinetics of heterogeneous nucleation in supersaturated vapor: Fundamental limits to neutral particle detection revisited. Aerosol Sci. Technol. 46 (9):1053–64. doi:10.1080/02786826.2012.687844.
  • McWhinney, R. D., N. Rastogi, B. Urch, F. Silverman, J. R. Brook, G. J. Evans, and J. P. D. Abbatt. 2012. Characterization of the University of Toronto Concentrated Aerosol Particle Exposure Facility (CAPEF)—Effects on fine and ultrafine nonrefractory aerosol composition. Aerosol Sci. Technol. 46 (6):697–707. doi:10.1080/02786826.2012.656769.
  • Mesquita, S. R., B. L. van Drooge, M. Dall'Osto, J. O. Grimalt, C. Barata, N. Vieira, L. Guimarães, and B. Piña. 2017. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona). Environ. Sci. Pollut. Res. Int. 24 (18):15406–15. doi:10.1007/s11356-017-9201-4.
  • Middlebrook, A. M., R. Bahreini, J. L. Jimenez, and M. R. Canagaratna. 2012. Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 46 (3):258–71. doi:10.1080/02786826.2011.620041.
  • Miller, K. A., D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman. 2007. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 356 (5):447–58. doi:10.1056/NEJMoa054409.
  • Misra, C., P. M. Fine, M. Singh, and C. Sioutas. 2004. Development and evaluation of a compact facility for exposing humans to concentrated ambient ultrafine particles. Aerosol Sci. Technol. 38 (1):27–35. doi:10.1080/02786820490247605.
  • Misra, C., S. Kim, S. Shen, and C. Sioutas. 2002. A high flow rate, very low pressure drop impactor for inertial separation of ultrafine from accumulation mode particles. J. Aerosol Sci. 33 (5):735–52. doi:10.1016/S0021-8502(01)00210-5.
  • Moffet, R. C., L. G. Shields, J. Berntsen, R. B. Devlin, and K. A. Prather. 2004. Characterization of an ambient coarse particle concentrator used for human exposure studies: Aerosol size distributions, chemical composition, and concentration enrichment. Aerosol Sci. Technol. 38 (11):1123–37. doi:10.1080/027868290890344.
  • Molteni, U., M. Simon, M. Heinritzi, C. R. Hoyle, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, S. Brilke, A. Dias, J. Duplissy, et al. 2019. Formation of highly oxygenated organic molecules from α-pinene ozonolysis: Chemical characteristics, mechanism, and kinetic model development. ACS Earth Space Chem. 3 (5):873–83. doi:10.1021/acsearthspacechem.9b00035.
  • Nel, A. 2005. Atmosphere. Air pollution-related illness: Effects of particles. Erratum in Science, 2005 Aug 2026; 2309 (5739):1326. Science 308 (5723):804–6. doi:10.1126/science.1108752.
  • Nemmar, A., P. H. Hoet, B. Vanquickenborne, D. Dinsdale, M. Thomeer, M. F. Hoylaerts, H. Vanbilloen, L. Mortelmans, and B. Nemery. 2002. Passage of inhaled particles into the blood circulation in humans. Circulation 105 (4):411–4. doi:10.1161/hc0402.104118.
  • NIST. 2021. NIST chemistry webbook, NIST standard reference database number 69, ed. P. J. Linstrom and W. G. Mallard, Gaithersburg, MD: National Institute of Standards and Technology Mass Spectrometry Data Center.
  • Ntziachristos, L., J. R. Froines, A. K. Cho, and C. Sioutas. 2007. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part. Fibre Toxicol. 4 (5). doi:10.1186/1743-8977-4-5.
  • Nunes, F. M. N., M. C. C. Veloso, P. A. d. P. Pereira, and J. B. de Andrade. 2005. Gas-phase ozonolysis of the monoterpenoids (s)-(+)-carvone, (r)-(−)-carvone, (−)-carveol, geraniol and citral. Atmos. Environ. 39 (40):7715–30. doi:10.1016/j.atmosenv.2005.04.009.
  • Oberdörster, G. 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74:1–8. doi:10.1007/s004200000185.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (7):823–39. doi:10.1289/ehp.7339.
  • Oberdörster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, and C. Cox. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16 (6–7):437–45. doi:10.1080/08958370490439597.
  • Oberdörster, G., and M. J. Utell. 2002. Ultrafine particles in the urban air: To the respiratory tract-and beyond? Environ. Health Perspect. 110 (8):A440–441. doi:10.1289/ehp.110-1240959.
  • Petäjä, T., G. Mordas, H. Manninen, P. P. Aalto, K. Hämeri, and M. Kulmala. 2006. Detection efficiency of a water-based TSI condensation particle counter 3785. Aerosol Sci. Technol. 40 (12):1090–7. doi:10.1080/02786820600979139.
  • Petters, S. S., T. G. Hilditch, S. Tomaz, R. E. H. Miles, J. P. Reid, and B. J. Turpin. 2020. Volatility change during droplet evaporation of pyruvic acid. ACS Earth Space Chem. 4 (5):741–9. doi:10.1021/acsearthspacechem.0c00044.
  • Pope, C. A. III, R. T. Burnett, G. D. Thurston, M. J. Thun, E. E. Calle, D. Krewski, and J. J. Godleski. 2004. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 109 (1):71–7. doi:10.1161/01.cir.0000108927.80044.7f.
  • Pope, C. A., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464485.
  • Pope, C. A., J. S. Lefler, M. Ezzati, J. D. Higbee, J. D. Marshall, S.-Y. Kim, M. Bechle, K. S. Gilliat, S. E. Vernon, A. L. Robinson, et al. 2019. Mortality risk and fine particulate air pollution in a large, representative cohort of U.S. Adults. Environ. Health Perspect. 127 (7):77007. doi:10.1289/EHP4438.
  • Poudel, B. K., J. Choi, J. H. Park, K.-O. Doh, and J. H. Byeon. 2017. In vitro exposure of simulated meat-cooking fumes to assess adverse biological effects. Sci. Rep. 7 (1):10841. doi:10.1038/s41598-017-11502-8.
  • Qi, L., S. Nakao, Q. Malloy, B. Warren, and D. R. Cocker. 2010. Can secondary organic aerosol formed in an atmospheric simulation chamber continuously age? Atmos. Environ. 44 (25):2990–6. doi:10.1016/j.atmosenv.2010.05.020.
  • Qin, Y., J. Ye, P. E. Ohno, Y. Lei, J. Wang, P. Liu, R. J. Thomson, and S. T. Martin. 2020. Synergistic uptake by acidic sulfate particles of gaseous mixtures of glyoxal and pinanediol. Environ. Sci. Technol. 54 (19):11762–70. doi:10.1021/acs.est.0c02062.
  • Rastogi, N., R. D. McWhinney, U. S. Akhtar, B. Urch, M. Fila, J. P. D. Abbatt, J. A. Scott, F. S. Silverman, J. R. Brook, and G. J. Evans. 2012. Physical characterization of the University of Toronto coarse, fine, and ultrafine high-volume particle concentrator systems. Aerosol Sci. Technol. 46 (9):1015–24. doi:10.1080/02786826.2012.686674.
  • Ridley, D. A., C. L. Heald, K. J. Ridley, and J. H. Kroll. 2018. Causes and consequences of decreasing atmospheric organic aerosol in the United States. Proc. Natl. Acad. Sci. U S A 115 (2):290–5. doi:10.1073/pnas.1700387115.
  • Rohr, A., and J. McDonald. 2016. Health effects of carbon-containing particulate matter: Focus on sources and recent research program results. Crit. Rev. Toxicol. 46 (2):97–137. doi:10.3109/10408444.2015.1107024.
  • Saarikoski, S., S. Carbone, M. J. Cubison, R. Hillamo, P. Keronen, C. Sioutas, D. R. Worsnop, and J. L. Jimenez. 2014. Evaluation of the performance of a particle concentrator for online instrumentation. Atmos. Meas. Tech. 7 (7):2121–35. doi:10.5194/amt-7-2121-2014.
  • Salcedo, D., T. B. Onasch, A. C. Aiken, L. R. Williams, B. de Foy, M. J. Cubison, D. R. Worsnop, L. T. Molina, and J. L. Jimenez. 2010. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations. Atmos. Chem. Phys. 10 (12):5371–89. doi:10.5194/acp-10-5371-2010.
  • Shang, X., H. Kang, Y. Chen, M. Abdumutallip, L. Li, X. Li, H. Fu, X. Wang, L. Wang, X. Wang, et al. 2021a. PM1.0-nitrite heterogeneous formation demonstrated via a modified versatile aerosol concentration enrichment system coupled with ion chromatography. Environ. Sci. Technol. 55 (14):9794–804. doi:10.1021/acs.est.1c02373.
  • Shang, X., L. Li, X. Zhang, H. Kang, G. Sui, G. Wang, X. Ye, H. Xiao, and J. Chen. 2021b. A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): Development and field characterization. Atmos. Meas. Tech. 14 (2):1037–45. doi:10.5194/amt-14-1037-2021.
  • Shilling, J. E., R. A. Zaveri, J. D. Fast, L. Kleinman, M. L. Alexander, M. R. Canagaratna, E. Fortner, J. M. Hubbe, J. T. Jayne, A. Sedlacek, et al. 2013. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmos. Chem. Phys. 13 (4):2091–113. doi:10.5194/acp-13-2091-2013.
  • Simkhovich, B. Z., M. T. Kleinman, and R. A. Kloner. 2008. Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J. Am. Coll. Cardiol. 52 (9):719–26. doi:10.1016/j.jacc.2008.05.029.
  • Sintermann, J., and A. Neftel. 2015. Ideas and perspectives: On the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation. Biogeosciences 12 (11):3225–40. doi:10.5194/bg-12-3225-2015.
  • Sioutas, C., S. Kim, and M. Chang. 1999. Development and evaluation of a prototype ultrafine particle concentrator. J. Aerosol Sci. 30 (8):1001–17. doi:10.1016/S0021-8502(98)00769-1.
  • Sioutas, C., P. Koutrakis, J. J. Godleski, S. T. Ferguson, C. S. Kim, and R. M. Burton. 1997. Fine particle concentrators for inhalation exposures—effect of particle size and composition. J. Aerosol Sci. 28 (6):1057–71. doi:10.1016/S0021-8502(96)00493-4.
  • Soleimanian, E., S. Taghvaee, and C. Sioutas. 2020. Characterization of organic compounds and oxidative potential of aqueous PM2.5 suspensions collected via an aerosol-into-liquid collector for use in toxicology studies. Atmos. Environ. 241:117839. doi:10.1016/j.atmosenv.2020.117839.
  • Steenhof, M., I. Gosens, M. Strak, K. J. Godri, G. Hoek, F. R. Cassee, I. S. Mudway, F. J. Kelly, R. M. Harrison, E. Lebret, et al. 2011. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - The RAPTES project. Part. Fibre Toxicol. 8:26. doi:10.1186/1743-8977-8-26.
  • Stone, V., M. R. Miller, M. J. D. Clift, A. Elder, N. L. Mills, P. Møller, R. P. F. Schins, U. Vogel, W. G. Kreyling, K. A. Jensen, et al. 2017. Nanomaterials versus ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environ. Health Perspect. 125 (10):106002. doi:10.1289/EHP424.
  • Su, Y., M. F. Sipin, M. T. Spencer, X. Qin, R. C. Moffet, L. G. Shields, K. A. Prather, P. Venkatachari, C.-H. Jeong, E. Kim, et al. 2006. Real-time characterization of the composition of individual particles emitted from ultrafine particle concentrators. Aerosol Sci. Technol. 40 (6):437–55. doi:10.1080/02786820600660887.
  • Sun, J., Q. Zhang, M. R. Canagaratna, Y. Zhang, N. L. Ng, Y. Sun, J. T. Jayne, X. Zhang, X. Zhang, and D. R. Worsnop. 2010. Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmos. Environ. 44 (1):131–40. doi:10.1016/j.atmosenv.2009.03.020.
  • Sun, Y., Q. Zhang, A. M. Macdonald, K. Hayden, S. M. Li, J. Liggio, P. S. K. Liu, K. G. Anlauf, W. R. Leaitch, A. Steffen, et al. 2009. Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. Atmos. Chem. Phys. 9 (9):3095–111. doi:10.5194/acp-9-3095-2009.
  • Taghvaee, S., A. Mousavi, M. H. Sowlat, and C. Sioutas. 2019. Development of a novel aerosol generation system for conducting inhalation exposures to ambient particulate matter (PM). Sci. Total Environ. 665:1035–45. doi:10.1016/j.scitotenv.2019.02.214.
  • Thompson, J. E. 2018. Airborne particulate matter: Human exposure and health effects. J. Occup. Environ. Med. 60 (5):392–423. doi:10.1097/jom.0000000000001277.
  • Tolocka, M. P., M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens, and M. V. Johnston. 2004. Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 38 (5):1428–34. doi:10.1021/es035030r.
  • Tong, H., A. M. Arangio, P. S. J. Lakey, T. Berkemeier, F. Liu, C. J. Kampf, W. H. Brune, U. Pöschl, and M. Shiraiwa. 2016. Hydroxyl radicals from secondary organic aerosol decomposition in water. Atmos. Chem. Phys. 16 (3):1761–71. doi:10.5194/acp-16-1761-2016.
  • Tong, H., P. S. J. Lakey, A. M. Arangio, J. Socorro, F. Shen, K. Lucas, W. H. Brune, U. Pöschl, and M. Shiraiwa. 2018. Reactive oxygen species formed by secondary organic aerosols in water and surrogate lung fluid. Environ. Sci. Technol. 52 (20):11642–51. doi:10.1021/acs.est.8b03695.
  • U.S. EPA. 2019. Integrated science assessment for particulate matter, 1967. Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC. December.
  • Verma, V., P. Pakbin, K. L. Cheung, A. K. Cho, J. J. Schauer, M. M. Shafer, M. T. Kleinman, and C. Sioutas. 2011. Physicochemical and oxidative characteristics of semi-volatile components of quasi-ultrafine particles in an urban atmosphere. Atmos. Environ. 45 (4):1025–33. doi:10.1016/j.atmosenv.2010.10.044.
  • Villeneuve, P. J., M. S. Goldberg, D. Krewski, R. T. Burnett, and Y. Chen. 2002. Fine particulate air pollution and all-cause mortality within the Harvard Six-Cities Study: Variations in risk by period of exposure. Ann. Epidem. 12 (8):568–76. doi:10.1016/S1047-2797(01)00292-7.
  • Wei, J., T. Fang, C. Wong, P. S. J. Lakey, S. A. Nizkorodov, and M. Shiraiwa. 2020a. Superoxide formation from aqueous reactions of biogenic secondary organic aerosols. Environ. Sci. Technol. 55 (1):260–70. doi:10.1021/acs.est.0c07789.
  • Wei, Z., Y. Li, R. G. Cooks, and X. Yan. 2020b. Accelerated reaction kinetics in microdroplets: Overview and recent developments. Annu. Rev. Phys. Chem. 71:31–51. doi:10.1146/annurev-physchem-121319-110654.
  • Wlasits, P. J., D. Stolzenburg, C. Tauber, S. Brilke, S. H. Schmitt, P. M. Winkler, and D. Wimmer. 2020. Counting on chemistry: Laboratory evaluation of seed-material-dependent detection efficiencies of ultrafine condensation particle counters. Atmos. Meas. Tech. 13 (7):3787–98. doi:10.5194/amt-13-3787-2020.
  • Yan, X., R. M. Bain, and R. G. Cooks. 2016. Organic reactions in microdroplets: Reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. Engl. 55 (42):12960–72. doi:10.1002/anie.201602270.
  • Yasmeen, F., N. Sauret, J. F. Gal, P. C. Maria, L. Massi, W. Maenhaut, and M. Claeys. 2010. Characterization of oligomers from methylglyoxal under dark conditions: A pathway to produce secondary organic aerosol through cloud processing during nighttime. Atmos. Chem. Phys. 10 (8):3803–12. doi:10.5194/acp-10-3803-2010.
  • Yu, J., R. C. Flagan, and J. H. Seinfeld. 1998. Identification of products containing − cooh, −oh, and − co in atmospheric oxidation of hydrocarbons. Environ. Sci. Technol. 32 (16):2357–70. doi:10.1021/es980129x.
  • Zhang, Q., M. R. Alfarra, D. R. Worsnop, J. D. Allan, H. Coe, M. R. Canagaratna, and J. L. Jimenez. 2005a. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ. Sci. Technol. 39 (13):4938–52. doi:10.1021/es048568l.
  • Zhang, Q., M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, and J.-L. Jimenez. 2005b. Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. J. Geophys. Res.: Atmos. 110:D07S09. doi:10.1029/2004JD004649.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced northern hemisphere midlatitudes. Geophys. Res. Lett. 34 (13):L13801. doi:10.1029/2007GL029979.
  • Zhang, Q., C. O. Stanier, M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, S. N. Pandis, and J. L. Jimenez. 2004. Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environ. Sci. Technol. 38 (18):4797–809. doi:10.1021/es035417u.
  • Zhao, Y., K. J. Bein, A. S. Wexler, C. Misra, P. M. Fine, and C. Sioutas. 2005. Field evaluation of the versatile aerosol concentration enrichment system (VACES) particle concentrator coupled to the rapid single-particle mass spectrometer (RSMS-3). J. Geophys. Res.: Atmos. 110:D07S02. doi:10.1029/2004JD004644.
  • Zhao, Y., C. J. Hennigan, A. A. May, D. S. Tkacik, J. A. de Gouw, J. B. Gilman, W. C. Kuster, A. Borbon, and A. L. Robinson. 2014. Intermediate-volatility organic compounds: A large source of secondary organic aerosol. Environ. Sci. Technol. 48 (23):13743–50. doi:10.1021/es5035188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.