290
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mobility distributions of Sub 5 nm singly self-charged water soluble and non-soluble particles from a heated NiCr wire in clean dry air

Pages 859-868 | Received 13 Feb 2022, Accepted 21 Jun 2022, Published online: 13 Jul 2022

References

  • Attoui, M. 2018. Activation of sub 2 nm singly charged particles with butanol vapors in a boosted 3776 TSI CPC. J. Aerosol. Sci. 126:47–57. doi:10.1016/j.jaerosci.2018.08.005.
  • Attoui, M., and J. Fernandez de la Mora. 2016. Flow driven transmission of charged particles against an axial field in antistatic tubes at the sample outlet of DMA. J. Aerosol Sci. 100:91–6. doi:10.1016/j.jaerosci.2016.06.002.
  • Boies, A., M. Pingyan Lei, S. Calder, W. G. Shin, and S. L. Girshick. 2011. Hot-wire synthesis of gold nanoparticles. Aerosol Sci. Technol. 45 (5):654–63. doi:10.1080/02786826.2010.551145.
  • Cai, R., M. Attoui, J. Jiang, F. Korhonen, J. Jiming Hao, T. Tuukka Petäjä, and J. Kangasluoma. 2018. Characterization of a high-resolution supercritical differential mobility analyzer at reduced flow rates. Aerosol Sci. Technol. 52 (11):1332–43. doi:10.1080/02786826.2018.1520964.
  • Coulier, P. J. 1875. Note sur une nouvelle propriété de l’air. J. Pharm. Chim. 22:254.
  • Domaschke, M., C. Lübbert, and W. Peukert. 2019. Analysis of ultrafine metal oxide particles in aerosols using mobility-resolved time-of- flight mass spectrometry. J. Aerosol Sci. 137:105438. doi:10.1016/j.jaerosci.2019.105438.
  • Fernandez de la Mora, J. 2017. Expanded flow rate range of high-resolution nano DMAs via improved sample flow injection at the aerosol inlet slit. J. Aerosol Sci. 113:265–75. doi:10.1016/j.jaerosci.2017.07.020.
  • Fernandez de la Mora, J., and C. Barrios-Collado. 2017. A bipolar electrospray source of singly charged clusters of precisely controlled composition. Aerosol Sci. Technol. 51 (6):778–86. doi:10.1080/02786826.2017.1302070.
  • Fernandez de la Mora, J., L. Liedtke, and A. Schmidt-Ott. 2003. Mass and size determination of nanometer particles by means of mobility analysis and focused impaction. J. Aerosol Sci. 34:78–98.
  • Fomenko, E., I. Altman, L. Boskovic, and I. E. Agranovski. 2021. Nanoparticle generation in glowing wire generator: insight into nucleation peculiarities. Materials. 14 (24):7775. doi:10.3390/ma14247775.
  • Friedlander, S. K. 2000. Smoke dust and haze: Fundamentals of aerosol dynamics. New York: Oxford University Press/New York: John Wiley & Sons.
  • Ghosh, K., S. N. Tripathi, M. Joshi, Y. S. Mayya, A. Khan, and B. K. Sapra. 2020. Particle formation from vapors emitted from glowing wires: theory and experiments. Aerosol Sci. Technol. 54 (3):243–61. doi:10.1080/02786826.2019.1688758.
  • Ghosh, K., S. N. Tripathi, M. Joshi, Y. S. Mayya, A. Khan, and B. K. Sapra. 2021. Effect of charge on aerosol microphysics of particles emitted from a hot wire generator: theory and experiments. Aerosol Sci. Technol. 55 (9):1084–98. doi:10.1080/02786826.2021.1931011.
  • Gwilym, O. 1903. On the condensation nuclei produced in air and hydrogen by heating a platinum wire. Philos Mag Ser. 6 (33):306–15. doi:10.1080/14786440309463021.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, A. Eiguren-Fernandez, N. M. Kreisberg, C. Kuang, and M. Attoui. 2017. Detection near 1 nm with a laminar-flow, water based condensation particle counter. Aerosol Sci. Technol. 51 (3):354–62. doi:10.1080/02786826.2016.1262531.
  • Kangasluoma, J., L. Ahonen, M. Attoui, H. Vuollekoski, M. Kulmala, and T. Petäjä. 2014. Sub 3 nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters. Aerosol Sci. Technol. 40 (8):674–81.
  • Kangasluoma, J., M. Attoui, F. Korhonen, L. Ahonen, E. Siivola, and T. Petäjä. 2016. Characterization of a Herrmann-type high resolution DMA. Aerosol Sci. Technol. 50 (3):222–9. doi:10.1080/02786826.2016.1142065.
  • Kangasluoma, J. H. Junnine, and M. Attoui. 2017. Method and arrangement for optimization or calibration of particle detector. International Patent WO 2017/162925 A1.
  • Kangasluoma, J., H. Junninen, K. Lehtipalo, J. Mikkila, J. Vanhanen, M. Attoui, M. Sipila, D. Worsnop, M. Kulmala, and T. Petaja. 2013. Remarks on ion generation for CPC detection efficiency studies in Sub-3-nm size range. Aerosol Sci. Technol. 47 (5):556–63. doi:10.1080/02786826.2013.773393.
  • Khan, A., P. Modak, M. Joshi, P. Khandare, A. Koli, A. Gupta, S. Anand, and B. K. Sapra. 2014. Generation of high-concentration nanoparticles using glowing wire technique. J. Nanoparticle Res. 16:2776. doi:10.1007/s11051-014-2776-5.
  • Kong, W., S. Amanatidis, H. Mai, C. Kim, C. Schulze, B. Huang, Y. Lewis, G. S. Hering, S. V. Seinfeld, J. H. Richard, et al. 2021. The nano scaning electrical mobility spectrometer (nSMPS) and its application to size distribution measurements of 1.5–25 nm particles. Atmos. Meas. Tech. 14 (8):5429–45. doi:10.5194/amt-2021-62.
  • Langmuir, I., S. MacLane, and K. B. Blodgett. 1930. The effect of end losses on the characteristics of filaments of tungsten and other materials. Phys. Rev. 35 (5):478–503. doi:10.1103/Phys.Rev.35.478.
  • Liu, Y., M. Attoui, Y. Li, J. Chen, Q. Li, and L. Wang. 2021. Characterization of a Kanomax fast condensation particle counter in the sub-10 nm range. J. Aerosol Sci. 155:105772. doi:10.1016/j.jaerosci.2021.105772.
  • Liu, B. Y. H., D. Y. H. Pui, A. W. Hogan, and T. A. Rich. 1975. Calibration of the Pollak counter with monodisperse aerosols. J. Appl. Meteor. 14 (1):46–51. doi:10.1175/1520-0450(1975)014<0046:COTPCW>2.0.CO;2.
  • Lodge, J. P., and B. J. Tufts. 1955. An electron microscope study of sodium chloride particles as uses in aerosol generation. J. Colloid Sci 10 (3):256–62. doi:10.1016/0095-8522(55)90038-6.
  • Megeyri, D. A. Kohut, and Z. Geretovsky. 2021. Effect of flow geometry on the nanoparticle output of a spark discharge generator. J. Aerosol Sci. 154:105758. http://www.elsevier.com/locate/jaerosci
  • Nolan, P. J., and E. L. Kennan. 1949. Condensation nuclei from hot platinum: size, coagulation coefficient and charge-distribution. Proc. Royal Irish Acad., Dublin 52A13 (1949):171–90.
  • O’Connor, T. C., and A. F. Roddy. 1966. The production of condensation nuclei by heated wires. J. Recherches Atmosphériques N. 2 (3):239–44.
  • Peineke, C., M. Attoui, R. Robles, A. C. Reber, S. N. Khanna, and A. Schmidt-Ott. 2009. Production of equal sized atomic clusters by a hot wire. J. Aerosol Sci. 40 (5):423–30. doi:10.1016/j.jaerosci.2008.12.008.
  • Peineke, C., M. Attoui, and A. Schmidt-Ott. 2006. Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations. J. Aerosol Sci. 37 (12):1651–61. doi:10.1016/j.jaerosci.2006.06.006.
  • Picard, D., M. Attoui, and K. Sellegri. 2019. B3010: a boosted TSI 3010 condensation particle counter for airborne studies. Atmos. Meas. Tech. 12 (4):2531–43. doi:10.5194/amt-12-2531-2019.
  • Sharma, G., M. Wang, M. Attoui, X. You, and P. Biswas. 2021. Measurement of sub-3 nm flame-generated particles using butanol CPCs in boosted conditions. Aerosol Sci. Technol. 55 (7):1–13. doi:10.1080/02786826.2021.1896675.
  • Swift, D. L. 1967. A study of the size and monodispersity of aerosols produced in a Sinclair Lamer generator. Ann. Occup. Hyg. 10:337–48.
  • Ude, S., and J. Fernández De La Mora. 2005. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36 (10):1224–37. doi:10.1016/j.jaerosci.2005.02.009.
  • Vonnegut, B. 1953. Effect of halogens on the production of condensation nuclei by a heated platinum wire. Science. 117 (3031):108–9. doi:10.1126/science.117.3031.108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.