1,599
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Application of machine learning approaches in the analysis of mass absorption cross-section of black carbon aerosols: Aerosol composition dependencies and sensitivity analyses

ORCID Icon & ORCID Icon
Pages 998-1008 | Received 03 Mar 2022, Accepted 05 Aug 2022, Published online: 06 Sep 2022

References

  • Abu Awad, Y., P. Koutrakis, B. A. Coull, and J. Schwartz. 2017. A spatio-temporal prediction model based on support vector machine regression: Ambient black carbon in three New England States. Environ. Res. 159:427–34. doi:10.1016/j.envres.2017.08.039.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30 (6):582–600. doi:10.1080/027868299304435.
  • Bond, T. C, and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Camponogara, G., M. A. F. Silva Dias, and G. G. Carrió. 2014. Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin. Atmos. Chem. Phys. 14 (9):4397–407. doi:10.5194/acp-14-4397-2014.
  • Cappa, C. D., K. R. Kolesar, X. Zhang, D. B. Atkinson, M. S. Pekour, R. A. Zaveri, A. Zelenyuk, and Q. Zhang. 2016. Understanding the optical properties of ambient sub- and supermicron particulate matter: Results from the CARES 2010 field study in northern California. Atmos. Chem. Phys. 16 (10):6511–35. doi:10.5194/acp-16-6511-2016.
  • Cazorla, A., R. Bahadur, K. J. Suski, J. F. Cahill, D. Chand, B. Schmid, V. Ramanathan, and K. A. Prather. 2013. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys. 13 (18):9337–50. doi:10.5194/acp-13-9337-2013.
  • Cho, C., S.-W. Kim, M. Lee, S. Lim, W. Fang, Ö. Gustafsson, A. Andersson, R. J. Park, and P. J. Sheridan. 2019. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ. 212:65–74. doi:10.1016/j.atmosenv.2019.05.024.
  • Davari, S. A, and A. S. Wexler. 2020. Quantification of toxic metals using machine learning techniques and spark emission spectroscopy. Atmos. Meas. Tech. 13 (10):5369–77. doi:10.5194/amt-13-5369-2020.
  • Forestieri, S. D., T. M. Helgestad, A. T. Lambe, L. Renbaum-Wolff, D. A. Lack, P. Massoli, E. S. Cross, M. K. Dubey, C. Mazzoleni, J. S. Olfert, et al. 2018. Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmos. Chem. Phys. 18 (16):12141–59. doi:10.5194/acp-18-12141-2018.
  • Fung, P. L., M. A. Zaidan, H. Timonen, J. V. Niemi, A. Kousa, J. Kuula, K. Luoma, S. Tarkoma, T. Petäjä, M. Kulmala, et al. 2021. Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration. J. Aerosol Sci 152:105694. doi:10.1016/j.jaerosci.2020.105694.
  • García Fernández, C., S. Picaud, and M. Devel. 2015. Calculations of the mass absorption cross sections for carbonaceous nanoparticles modeling soot. J. Quant. Spectrosc. Radiat. Transf. 164:69–81. doi:10.1016/j.jqsrt.2015.05.011.
  • Gyawali, M., W. P. Arnott, R. Zaveri, C. Song, B. Flowers, M. Dubey, A. Setyan, Q. Zhang, S. China, C. Mazzoleni, et al. 2017. Evolution of multispectral aerosol absorption properties in a biogenically-influenced urban environment during the CARES campaign. Atmosphere (Basel) 8 (12):217. doi:10.3390/atmos8110217.
  • Hansen, A. D. A., H. Rosen, and T. Novakov. 1984. The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 36:191–6. doi:10.1016/0048-9697(84)90265-1.
  • Hughes, M., J. Kodros, J. Pierce, M. West, and N. Riemer. 2018. Machine learning to predict the global distribution of aerosol mixing state metrics. Atmosphere (Basel) 9 (1):15. doi:10.3390/atmos9010015.
  • Kassianov, E., J. Barnard, M. Pekour, L. K. Berg, J. Shilling, C. Flynn, F. Mei, and A. Jefferson. 2014. Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: Weakly absorbing aerosol. Atmos. Meas. Tech. 7 (10):3247–61. doi:10.5194/amt-7-3247-2014.
  • Koch, D., M. Schulz, S. Kinne, C. McNaughton, J. R. Spackman, Y. Balkanski, S. Bauer, T. Berntsen, T. C. Bond, O. Boucher, et al. 2009. Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys. 9 (22):9001–26. doi:10.5194/acp-9-9001-2009.
  • Kondo, Y., H. Matsui, N. Moteki, L. Sahu, N. Takegawa, M. Kajino, Y. Zhao, M. J. Cubison, J. L. Jimenez, S. Vay, et al. 2011. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. J. Geophys. Res. 116 (D8):D16302. doi:10.1029/2010JD015152.
  • Kumar, J., T. Paik, N. Shetty, P. Sheridan, A. Aiken, M. Dubey, and R. Chakrabarty. 2022. Correcting for filter-based aerosol light absorption biases at ARM’s SGP site using photoacoustic data and machine learning. Atmos. Meas. Tech. 15 (15):4569–83. doi:10.5194/amt-2022-42.
  • Lack, D. A, and C. D. Cappa. 2010. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos. Chem. Phys. 10 (9):4207–20. doi:10.5194/acp-10-4207-2010.
  • Lack, D. A, and J. M. Langridge. 2013. On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos. Chem. Phys. 13 (20):10535–43. doi:10.5194/acp-13-10535-2013.
  • Li, H., K. D. Lamb, J. P. Schwarz, V. Selimovic, R. J. Yokelson, G. R. McMeeking, and A. A. May. 2019. Inter-comparison of black carbon measurement methods for simulated open biomass burning emissions. Atmos. Environ. 206:156–69. doi:10.1016/j.atmosenv.2019.03.010.
  • Li, H, and A. A. May. 2022. Estimating absorption cross section of ambient black carbon aerosols: Theoretical, empirical, and machine learning models. Aerosol Sci. Technol. doi:10.1080/02786826.2022.2114311.
  • Li, H, and A. A. May. 2020a. An exploratory approach using regression and machine learning in the analysis of mass absorption cross section of black carbon aerosols: Model development and evaluation. Atmosphere (Basel). 11 (11):1185. doi:10.3390/atmos11111185.
  • Li, H, and A. A. May. 2020b. Application of regression and machine learning approaches in the analysis of mass absorption cross section of black carbon aerosols. Zenodo. https://zenodo.org/record/3967833. doi:10.5281/zenodo.3967833.
  • Li, H., G. R. McMeeking, and A. A. May. 2020. Development of a new correction algorithm applicable to any filter-based absorption photometer. Atmos. Meas. Tech. 13 (5):2865–86. doi:10.5194/amt-13-2865-2020.
  • Lim, C. C., H. Kim, M. J. R. Vilcassim, G. D. Thurston, T. Gordon, L.-C. Chen, K. Lee, M. Heimbinder, and S.-Y. Kim. 2019. Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea. Environ. Int. 131:105022. doi:10.1016/j.envint.2019.105022.
  • Liu, F., J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbin. 2020. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54 (1):33–51. doi:10.1080/02786826.2019.1676878.
  • Luo, J., Y. Zhang, F. Wang, J. Wang, and Q. Zhang. 2018. Applying machine learning to estimate the optical properties of black carbon fractal aggregates. J. Quant. Spectrosc. Radiat. Transf. 215:1–8. doi:10.1016/j.jqsrt.2018.05.002.
  • Ma, Y., W. Gong, P. Wang, and X. Hu. 2011. New dust aerosol identification method for spaceborne lidar measurements. J. Quant. Spectrosc. Radiat. Transf. 112 (2):338–45. doi:10.1016/j.jqsrt.2010.08.004.
  • Mbengue, S., N. Zikova, J. Schwarz, P. Vodička, A. H. Šmejkalová, and I. Holoubek. 2021. Mass absorption cross-section and absorption enhancement from long term black and elemental carbon measurements: A rural background station in Central Europe. Sci. Total Environ. 794:148365. doi:10.1016/j.scitotenv.2021.148365.
  • McDuffie, E. E., S. J. Smith, P. O'Rourke, K. Tibrewal, C. Venkataraman, E. A. Marais, B. Zheng, M. Crippa, M. Brauer, and R. V. Martin. 2020. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the community emissions data system (CEDS). Earth Syst. Sci. Data 12 (4):3413–42. doi:10.5194/essd-12-3413-2020.
  • McFarlane, C., G. Raheja, C. Malings, E. K. E. Appoh, A. F. Hughes, and D. M. Westervelt. 2021. Application of Gaussian mixture regression for the correction of low cost PM 2.5 monitoring data in Accra, Ghana. ACS Earth Space Chem. 5 (9):2268–79. doi:10.1021/acsearthspacechem.1c00217.
  • Moosmüller, H., W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, and D. L. Dietrich. 1998. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range air quality study (Colorado 1996/1997). J. Geophys. Res. 103 (D21):28149–57. doi:10.1029/98JD02618.
  • Morris, R. E., D. E. McNally, T. W. Tesche, G. Tonnesen, J. W. Boylan, and P. Brewer. 2005. Preliminary evaluation of the community multiscale air quality model for 2002 over the Southeastern United States. J. Air Waste Manag. Assoc. 55 (11):1694–708. doi:10.1080/10473289.2005.10464765.
  • Murphy, D. M., A. M. Middlebrook, and M. Warshawsky. 2003. Cluster analysis of data from the particle analysis by laser mass spectrometry (PALMS) instrument. Aerosol Sci. Technol. 37 (4):382–91. doi:10.1080/02786820300971.
  • Myhre, G., B. H. Samset, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl, et al. 2013. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13 (4):1853–77. doi:10.5194/acp-13-1853-2013.
  • Nair, A. A, and F. Yu. 2020. Using machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements. Atmos. Chem. Phys. 20 (21):12853–69. doi:10.5194/acp-20-12853-2020.
  • Nordmann, S., W. Birmili, K. Weinhold, K. Müller, G. Spindler, and A. Wiedensohler. 2013. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy. J. Geophys. Res. Atmos. 118 (21):12075–12085. doi:10.1002/2013JD020021.
  • Ogren, J. A. 2010. Comment on “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols”. Aerosol Sci. Technol 44 (8):589–91. doi:10.1080/02786826.2010.482111.
  • Ohata, S., T. Mori, Y. Kondo, S. Sharma, A. Hyvärinen, E. Andrews, P. Tunved, E. Asmi, J. Backman, H. Servomaa, et al. 2021. Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic. Atmos. Meas. Tech. 14 (10):6723–48. doi:10.5194/amt-14-6723-2021.
  • Patra, S. S., R. Ramsisaria, R. Du, T. Wu, and B. E. Boor. 2021. A machine learning field calibration method for improving the performance of low-cost particle sensors. Build. Environ 190:107457. doi:10.1016/j.buildenv.2020.107457.
  • Phares, D. J., K. P. Rhoads, A. S. Wexler, D. B. Kane, and M. V. Johnston. 2001. Application of the ART-2a algorithm to laser ablation aerosol mass spectrometry of particle standards. Anal. Chem. 73 (10):2338–44. doi:10.1021/ac0015063.
  • Qin, W., L. Wang, A. Lin, M. Zhang, and M. Bilal. 2018. Improving the estimation of daily aerosol optical depth and aerosol radiative effect using an optimized artificial neural network. Remote Sens. 10 (7):1022. doi:10.3390/rs10071022.
  • Ramanathan, V, and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nature Geosci. 1 (4):221–7. doi:10.1038/ngeo156.
  • Ruske, S., D. O. Topping, V. E. Foot, P. H. Kaye, W. R. Stanley, I. Crawford, A. P. Morse, and M. W. Gallagher. 2017. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer. Atmos. Meas. Tech. 10 (2):695–708. doi:10.5194/amt-10-695-2017.
  • Schulz, M., C. Textor, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, F. Dentener, S. Guibert, et al. 2006. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys. 6 (12):5225–46. doi:10.5194/acpd-6-5095-2006.
  • Schumacher, R. S., D. A. Hence, S. W. Nesbitt, R. J. Trapp, K. A. Kosiba, J. Wurman, P. Salio, M. Rugna, A. C. Varble, and N. R. Kelly. 2021. Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. Mon. Weather Rev 149 (5):1439–58. doi:10.1175/MWR-D-20-0293.1.
  • Si, M., Y. Xiong, S. Du, and K. Du. 2020. Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmos. Meas. Tech. 13 (4):1693–707. doi:10.5194/amt-13-1693-2020.
  • Song, X.-H., P. K. Hopke, D. P. Fergenson, and K. A. Prather. 1999. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Anal. Chem. 71 (4):860–5. doi:10.1021/ac9809682.
  • Titos, G., A. Jefferson, P. J. Sheridan, E. Andrews, H. Lyamani, L. Alados-Arboledas, and J. A. Ogren. 2014. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmos. Chem. Phys. 14 (13):7031–43. doi:10.5194/acp-14-7031-2014.
  • Varble, A. C., S. W. Nesbitt, P. Salio, J. C. Hardin, N. Bharadwaj, P. Borque, P. J. DeMott, Z. Feng, T. C. J. Hill, J. N. Marquis, et al. 2021. Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment. Bull. Am. Meteorol. Soc. 102 (8):E1597–E1620. doi:10.1175/BAMS-D-20-0030.1.
  • Wang, X., C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke. 2014. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmos. Chem. Phys. 14 (20):10989–1010. doi:10.5194/acp-14-10989-2014.
  • Yuan, J., R. L. Modini, M. Zanatta, A. B. Herber, T. Müller, B. Wehner, L. Poulain, T. Tuch, U. Baltensperger, and M. Gysel-Beer. 2021. Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmos. Chem. Phys. 21 (2):635–55. doi:10.5194/acp-21-635-2021.
  • Zanatta, M., M. Gysel, N. Bukowiecki, T. Müller, E. Weingartner, H. Areskoug, M. Fiebig, K. E. Yttri, N. Mihalopoulos, G. Kouvarakis, et al. 2016. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ. 145:346–64. doi:10.1016/j.atmosenv.2016.09.035.
  • Zanatta, M., P. Laj, M. Gysel, U. Baltensperger, S. Vratolis, K. Eleftheriadis, Y. Kondo, P. Dubuisson, V. Winiarek, S. Kazadzis, et al. 2018. Effects of mixing state on optical and radiative properties of black carbon in the European Arctic. Atmos. Chem. Phys. 18 (19):14037–57. doi:10.5194/acp-18-14037-2018.
  • Zelenyuk, A., D. Imre, Y. Cai, K. Mueller, Y. Han, and P. Imrich. 2006. SpectraMiner, an interactive data mining and visualization software for single particle mass spectroscopy: A laboratory test case. Int. J. Mass Spectrom 258 (1–3):58–73. doi:10.1016/j.ijms.2006.06.015.
  • Zeng, S., A. Omar, M. Vaughan, M. Ortiz, C. Trepte, J. Tackett, J. Yagle, P. Lucker, Y. Hu, D. Winker, et al. 2020. Identifying aerosol subtypes from CALIPSO lidar profiles using deep machine learning. Atmosphere (Basel 12 (1):10. doi:10.3390/atmos12010010.
  • Zheng, Z., J. H. Curtis, Y. Yao, J. T. Gasparik, V. G. Anantharaj, L. Zhao, M. West, and N. Riemer. 2021. Estimating submicron aerosol mixing state at the global scale with machine learning and earth system modeling. Earth Sp. Sci 8 (2):e2020EA001500. doi:10.1029/2020EA001500.