430
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Pollen classification using a single particle fluorescence spectroscopy technique

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 112-133 | Received 15 Sep 2022, Accepted 18 Oct 2022, Published online: 01 Dec 2022

References

  • Adamov, S., N. Lemonis, B. Clot, B. Crouzy, R. Gehrig, M.-J. Graber, C. Sallin, and F. Tummon. 2021. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia (Bologna). (Special Issue: Autopollen):1–15. doi:10.1007/s10453-021-09724-5.
  • Alcazar, P., P. V. Orby, J. Oteros, C. Skjoth, O. Hertel, and C. Galan. 2019. Cluster analysis of variations in the diurnal pattern of grass pollen concentrations in Northern Europe (Copenhagen) and Southern Europe (Cordoba). Aerobiologia (Bologna). 35 (2):269–81. doi:10.1007/s10453-019-09558-2.
  • Blaiss, M. 2010. Allergic rhinitis: Direct and indirect costs. Allergy Asthma Proc. 31 (5):375–80. doi:10.2500/aap.2010.31.3329.
  • Breiman, L. 2001. Random forests. Mach. Learn. 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Brennan, G., C. Potter, N. de Vere, G. Griffith, C. Skjøth, N. Osborne, B. Wheeler, R. McInnes, Y. Clewlow, A. Barber, PollerGEN Consortium, et al. 2019. Temperate airborne grass pollen defined by spatio-temporal shifts in community composition. Nat. Ecol. Evol. 3 (5):750–4. doi:10.1038/s41559-019-0849-7.
  • Buckland, M., and F. Gey. 1994. The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45 (1):12–9. doi:10.1002/(SICI)1097-4571(199401)45:1 < 12::AID-ASI2 > 3.0.CO;2-L.
  • National Allergy Bureau. 2019. NAB pollen counts. Milwaukee, WI: National Allergy Bureau.
  • Burge, H. A. 2002. An update on pollen and fungal spore aerobiology. J. Allergy Clin. Immunol. 110 (4):544–52. doi:10.1067/mai.2002.128674.
  • Buters, J., C. Antunes, A. Galveias, K. Bergmann, M. Thibaudon, C. Galán, C. Schmidt-Weber, and J. Oteros. 2018. Pollen and spore monitoring in the world. Clin. Transl. Allergy. 8 (1):9. doi:10.1186/s13601-018-0197-8.
  • Buters, J., B. Clot, C. Galán, R. Gehrig, S. Gilge, F. Hentges, D. O’Connor, B. Sikoparija, C. Skjoth, F. Tummon, et al. 2022. Automatic detection of airborne pollen: an overview. Aerobiologia 30:1–25.
  • Buters, J., J. Oteros, R. Gebauer, and K. Heigl. 2020. Automatic pollen monitoring in Germany a work of the Environmental and Occupational Medicine Department of the German Society for Allergology and Clinical Immunology (DGAKI). Allergo J. 29 (3):14–6. doi:10.1007/s15007-020-2527-0.
  • Buters, J., C. Schmidt-Weber, and J. Oteros. 2018. Next-generation pollen monitoring and dissemination. Allergy 73 (10):1944–5. doi:10.1111/all.13585.
  • Calvo, A., D. Baumgardner, A. Castro, D. Fernández-González, A. Vega-Maray, R. Valencia-Barrera, F. Oduber, C. Blanco-Alegre, and R. Faile. 2018. Daily behavior of urban Fluorescing Aerosol Particles in northwest Spain. Atmos. Environ. (184):262–77. doi:10.1016/j.atmosenv.2018.04.027.
  • Cao, N., M. Meyer, L. Thiele, and O. Saukh. 2020. Automated pollen detection with an affordable technology. Wirel. Sens. Networks 108–19.
  • Chappuis, C., F. Tummon, B. Clot, T. Konzelmann, B. Calpini, and B. Crouzy. 2020. Automatic pollen monitoring: first insights from hourly data. Aerobiologia (Bologna). 36 (2):159–70. doi:10.1007/s10453-019-09619-6.
  • Clot, B., S. Gilge, L. Hajkova, D. Magyar, H. Scheifinger, M. Sofiev, F. Bütler, and F. Tummon. 2020. The EUMETNET AutoPollen programme: establishing a prototype automatic pollen monitoring network in Europe. Aerobiologia (Bologna). 1–9. doi:10.1007/s10453-020-09666-4.
  • Crawford, I., S. Ruske, D. Topping, and M. Gallagher. 2015. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination of primary biological aerosol. Atmos. Meas. Tech. 8 (11):4979–91. doi:10.5194/amt-8-4979-2015.
  • Crawford, I., D. Topping, M. Gallagher, E. Forde, J. R. Lloyd, V. Foot, C. Stopford, and P. Kaye. 2020. Detection of airborne biological particles in indoor air using a real-time advanced morphological parameter uv-lif spectrometer and gradient boosting ensemble decision tree classifiers. Atmosphere (Basel). 11 (10):1039. doi:10.3390/atmos11101039.
  • Crouzy, B., M. Stella, T. Konzelmann, B. Calpini, and B. Clot. 2016. All-optical automatic pollen identification: Towards an operational system. Atmos. Environ. 140:202–12. doi:10.1016/j.atmosenv.2016.05.062.
  • D’Amato, G., L. Cecchi, S. Bonini, C. Nunes, I. Annesi-Maesano, H. Behrendt, G. Liccardi, T. Popov, and P. van Cauwenberge. 2007. Allergenic pollen and pollen allergy in Europe. Allergy 62 (9):976–90. doi:10.1201/9781315207520.
  • D’Amato, G., C. Vitale, M. Lanza, A. Molino, and M. D'Amato. 2016. Climate change, air pollution, and allergic respiratory diseases: An update. Curr. Opin. Allergy Clin. Immunol. 16 (5):434–40. doi:10.1097/ACI.0000000000000301.
  • D’Amato, G., Vitale, C. Sanduzzi, A. Molino, A. Vatrella, A. D’Amato, M. Cecchi, L. Bonin, S. Nunes, C. I. A. Behrendt, et al. 2007. Allergenic pollen and pollen allergy in Europe. Allergy Allerg. Immunother. New Mech. Strateg. 62 (9):976–90. doi:10.1111/j.1398-9995.2007.01393.x.
  • D’Orazio, M., R. Reale, A. De Ninno, M. A. Brighetti, A. Mencattini, L. Businaro, E. Martinelli, P. Bisenga, A. Travaglini, and F. Caselli. 2022. Electro-optical classification of pollen grains via microfluidics and machine learning. Trans. Biomed. Eng. 69 (2):921–931.
  • Daunys, G., L. Šukienė, L. Vaitkevičius, G. Valiulis, M. Sofiev, and I. Šaulienė. 2021. Clustering approach for the analysis of the fluorescent bioaerosol collected by an automatic detector. PLoS One 16 (3):e0247284. doi:10.1371/journal.pone.0247284.
  • Després, V., J. A. Huffman, S. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. Andreae, U. Pöschl, et al. 2012. Primary biological aerosol particles in the atmosphere: a review. Chem. Phys. Meteorol. 64 (1):15598. doi:10.3402/tellusb.v64i0.15598.
  • Dobson, H. E. M. 1988. Survey of pollen and pollenkitt lipids – chemical cues to flower visitors? Am. J. Bot. 75 (2):170–82. doi:10.2307/2443884.
  • Doughty, D., and S. Hill. 2017. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol. J. Quant. Spectrosc. Radiat. Transf. 188:103–17. doi:10.1016/j.jqsrt.2016.06.042.
  • Dunker, S., E. Motivans, D. Rakosy, D. Boho, P. Mader, T. Hornick, and T. M. Knight. 2021. Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol. 229 (1):593–606. doi:10.1111/nph.16882.
  • Fennelly, M. J., G. Sewell, M. B. Prentice, D. J. O’Connor, and J. R. Sodeau. 2017. Review: The use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmosphere (Basel). 9 (1):1. doi:10.3390/atmos9010001.
  • Forbes, P. 2020. Atmospheric chemistry analysis: A review. Anal. Chem. 92 (1):455–72. doi:10.1021/acs.analchem.9b04623.
  • France, I., A. W. G. Duller, G. A. T. Duller, and H. F. Lamb. 2000. A new approach to automated pollen analysis. Quat. Sci. Rev. 19 (6):537–46. doi:10.1016/S0277-3791(99)00021-9.
  • Frenz, D. A. 1999. Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann. Allergy. Asthma Immunol. 83 (5):341–9. doi:10.1016/S1081-1206(10)62828-1.
  • Frisk, C., G. Apangu, G. Petch, B. Adams-Groom, and C. Skjøth. 2022. Atmospheric transport reveals grass pollen dispersion distances. Sci. Total Environ. 814 (814):152806. doi:10.1016/j.scitotenv.2021.152806.
  • Fröhlich-Nowoisky, J., C. Kampf, B. Weber, J. A. Huffman, C. Pöhlker, M. Andreae, N. Lang-Yona, S. Burrows, S. Gunthe, W. Elbert, et al. 2016. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182:346–76. doi:10.1016/j.atmosres.2016.07.018.
  • Galán, C., M. Smith, M. Thibaudon, G. Frenguelli, J. Oteros, R. Gehrig, U. Berger, B. Clot, and R. Brandao, EAS QC Working Group 2014. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia (Bologna). 30 (4):385–95. doi:10.1007/s10453-014-9335-5.
  • Gallardo-Caballero, R., C. J. Garcia-Orellana, A. Garcia-Manso, H. M. Gonzalez-Velasco, R. Tormo-Molina, and M. Macias-Macias. 2019. Precise pollen grain detection in bright field microscopy using deep learning techniques. Sensors 19 (16):3583. doi:10.3390/s19163583.
  • Gehrig, R., F. Maurer, and C. Schwierz. 2018. Designing new automatically generated pollen calendars for the public in Switzerland. Aerobiologia (Bologna). 34 (3):349–62. doi:10.1007/s10453-018-9518-6.
  • Gregory, P. 1978. Distribution of airborne pollen and spores and their long distance transport. PAGEOPH 116 (2–3):309–15. doi:10.1007/BF01636888.
  • Guedes, A., H. Ribeiro, M. Fernández-González, M. J. Aira, and I. Abreu. 2014. Pollen Raman spectra database: Application to the identification of airborne pollen. Talanta (119)::473–8. doi:10.1016/j.talanta.2013.11.046.
  • Genuer, R., J. M. Poggi, and C. Tuleau. 2008. Random forests: Some methodological insights. arXiv preprint arXiv:0811.3619.
  • Hamaoui-Laguel, L., R. Vautard, L. Liu, F. Solmon, N. Viovy, D. Khvorostyanov, F. Essl, I. Chuine, A. Colette, M. Semenov, et al. 2015. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nature Clim. Change 5 (8):766–71. doi:10.1038/nclimate2652.
  • Hernandez, M., A. Perring, K. McCabe, G. Kok, G. Granger, and D. Baumgardner. 2016. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. Atmos. Meas. Tech. 9 (7):3283–3292. doi:10.5194/amt-9-3283-2016.
  • Hill, S. C., M. W. Mayo, and R. K. Chang. 2009. Fluorescence of bacteria, pollens, and naturally occurring airborne particles: excitation/emission spectra. Army Res. Lab. Appl. Phys. (No. ARL-TR-4722).
  • Holt, K. A, and K. D. Bennett. 2014. Principles and methods for automated palynology. New Phytol. 203 (3):735–42. doi:10.1111/nph.12848.
  • Hothorn, T., A. Zeileis, E. Cheng, and S. Ong. 2015. partykit: A modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16 (1):3905–9.
  • Huffman, D., and J. A. Huffman. 2019. Wavelength dispersive microscope spectrofluorometer for characterizing multiple particles simultaneously. US Patent US10267734B2, filed January 8, 2015, and issued April 23, 2019.
  • Huffman, D., B. Swanson, and J. A. Huffman. 2016. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate. Atmos. Meas. Tech. 9 (8):3987–98. doi:10.5194/amt-9-3987-2016.
  • Huffman, J., A. Perring, N. Savage, B. Clot, B. Crouzy, F. Tummon, O. Shoshanim, B. Damit, J. Schneider, V. Sivaprakasam, et al. 2020. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 54 (5):465–95. doi:10.1080/02786826.2019.1664724.
  • Kabir, E., A. Azzouz, N. Raza, S. K. Bhardwaj, K.-H. Kim, M. Tabatabaei, and D. Kukkar. 2020. Recent advances in monitoring, sampling, and sensing techniques for bioaerosols in the atmosphere. ACS Sens. 5 (5):1254–67. doi:10.1021/acssensors.9b02585.
  • Kawashima, S., B. Clot, T. Fujita, Y. Takahashi, and K. Nakamura. 2007. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmos. Environ 41 (36):7987–93. doi:10.1016/j.atmosenv.2007.09.019.
  • Kawashima, S., M. Thibaudon, S. Matsuda, T. Fujita, N. Lemonis, B. Clot, and G. Oliver. 2017. Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia (Bologna). 33 (3):351–62. doi:10.1007/s10453-017-9474-6.
  • Kemppinen, O., J. C. Laning, R. D. Mersmann, G. Videen, and M. J. Berg. 2020. Imaging atmospheric aerosol particles from a UAV with digital holography. Sci. Rep. 10 (1):1–12. doi:10.1038/s41598-020-72411-x.
  • Kiselev, D., L. Bonacina, and J.-P. Wolf. 2011. Individual bioaerosol particle discrimination by multi-photon excited fluorescence. Opt. Express. 19 (24):24516–21. doi:10.1364/OE.19.024516.
  • Kiselev, D., L. Bonacina, and J. P. Wolf. 2013. A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev. Sci. Instrum. 84 (3):033302. doi:10.1063/1.4793792.
  • Klimczak, L. J., C. E. von Eschenbach, P. M. Thompson, J. T. M. Buters, and G. A. Mueller. 2020. Mixture analyses of air-sampled pollen extracts can accurately differentiate pollen taxa. Atmos. Environ. 243:117746. doi:10.1016/j.atmosenv.2020.117746.
  • Könemann, T., N. Savage, T. Klimach, D. Walter, J. Fröhlich-Nowoisky, H. Su, U. Pöschl, J. A. Huffman, and C. Pöhlker. 2019. Spectral Intensity Bioaerosol Sensor (SIBS): An instrument for spectrally resolved fluorescence detection of single particles in real time. Atmos. Meas. Tech. 12 (2):1337–63. doi:10.5194/amt-12-1337-2019.
  • Kosisky, S., M. Marks, and M. Nelson. 2010. Pollen aeroallergens in the Washington, DC, metropolitan area: a 10-year volumetric survey (1998–2007). Ann. Allergy, Asthma Immunol. 104 (3):223–35.
  • Lake, I., N. Jones, M. Agnew, C. Goodess, F. Giorgi, L. Hamaoui-Laguel, M. Semenov, F. Solmon, J. Storkey, R. Vautard, et al. 2018. M. Erratum: “Climate Change and Future Pollen Allergy in Europe.” Environ. Health Perspect. 3:385–391.
  • Lee, M., O. Yaglidere, and A. Ozcan. 2011. Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express. 2 (9):2721–30. doi:10.1364/boe.2.002721.
  • Lieberherr, G., K. Auderset, B. Calpini, B. Clot, B. Crouzy, M. Gysel-Beer, T. Konzelmann, J. Manzano, A. Mihajlovic, A. Moallemi, et al. 2021. Assessment of real-time bioaerosol particle counters using reference chamber experiments. Atmos. Meas. Tech. 14 (12):7693–706. doi:10.5194/amt-14-7693-2021.
  • Majkowska-Wojciechowska, B. 2020. Aerobiology methods – scientific and technological progress. Alerg. Astma Immunol. 25 (3):141–53.
  • Mander, L., S. J. Baker, C. M. Belcher, D. S. Haselhorst, J. Rodriguez, J. L. Thorn, S. Tiwari, D. H. Urrego, C. J. Wesseln, and S. W. Punyasena. 2014. Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation. Appl. Plant Sci. 2 (8):1400031. doi:10.3732/apps.1400031.
  • Maya-Manzano, J. M., M. Smith, E. Markey, J. Hourihane Clancy, J. Sodeau, and D. J. O’Connor. 2021. Recent developments in monitoring and modelling airborne pollen, a review. Grana 60 (1):1–19. doi:10.1080/00173134.2020.1769176.
  • Miki, K., T. Fujita, and N. Sahashi. 2021. Development and application of a method to classify airborne pollen taxa concentration using light scattering data. Sci. Rep. 11 (1):1–12. doi:10.1038/s41598-021-01919-7.
  • Miki, K., and S. Kawashima. 2021. Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa – establishment of an automated multi-taxa pollen counting estimation system (AME system). Atmos. Meas. Tech. 14 (1):685–93. doi:10.5194/amt-14-685-2021.
  • Miki, K., S. Kawashima, B. Clot, and K. Nakamura. 2019. Comparative efficiency of airborne pollen concentration evaluation in two pollen sampler designs related to impaction and changes in internal wind speed. Atmos. Environ. 203:18–27. doi:10.1016/j.atmosenv.2019.01.039.
  • Mitsumoto, K., K. Yabusaki, K. Kobayashi, and H. Aoyagi. 2010. Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence. Aerobiologia 26 (2):99–111. doi:10.1007/s10453-009-9147-1.
  • Newnham, R. 2022. Monitoring airborne pollen in New Zealand. J. R. Soc. New Zeal. 52 (2):192–211.
  • O’Connor, D., D. Healy, S. Hellebust, J. Buters, and J. Sodeau. 2014. Using the WIBS-4 (waveband integrated bioaerosol sensor) technique for the on-line detection of pollen grains. Aerosol Sci. Technol. 48 (4):341–9. doi:10.1080/02786826.2013.872768.
  • O’Connor, D. J., D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau. 2011. The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmos. Environ. 45 (35):6451–8. doi:10.1016/j.atmosenv.2011.07.044.
  • O’Connor, D. J., P. Lovera, D. Iacopino, A. O'Riordan, D. A. Healy, and J. R. Sodeau. 2014. Using spectral analysis and fluorescence lifetimes to discriminate between grass and tree pollen for aerobiological applications. Anal. Methods 6 (6):1633–9. doi:10.1039/C3AY41093E.
  • Olsson, O., M. Karlsson, A. S. Persson, H. G. Smith, V. Varadarajan, J. Yourstone, and M. Stjernman. 2021. Efficient, automated and robust pollen analysis using deep learning. Methods Ecol. Evol. 12 (5):850–62. doi:10.1111/2041-210X.13575.
  • Oteros, J., G. Pusch, I. Weichenmeier, U. Heimann, R. Möller, S. Röseler, C. Traidl-Hoffmann, C. Schmidt-Weber, and J. Buters. 2015. Automatic and online pollen monitoring. Int. Arch. Allergy Immunol. 167 (3):158–66. doi:10.1159/000436968.
  • Oteros, J., M. Sofiev, M. Smith, B. Clot, A. Damialis, M. Prank, M. Werchan, R. Wachter, A. Weber, S. Kutzora, et al. 2019. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations. Sci. Total Environ. 688:1263–74. doi:10.1016/j.scitotenv.2019.06.131.
  • Oteros, J., A. Weber, S. Kutzora, J. Rojo, S. Heinze, C. Herr, R. Gebauer, C. B. Schmidt-Weber, and J. T. M. Buters. 2020. An operational robotic pollen monitoring network based on automatic image recognition. Environ. Res. 191. doi:10.1016/j.envres.2020.110031.
  • Pan, Y., Le, Hartings, J. Pinnick, R. G. Hill, S. C. Halverson, J, and Chang, R. K. 2003. Single-Particle fluorescence spectrometer for ambient aerosols. Aerosol Sci. Technol. 37 (8):628–39. doi:10.1080/02786820300904.
  • Pan, Y. L., S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang. 2011. Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles. Atmos. Environ. 45 (8):1555–63. doi:10.1016/j.atmosenv.2010.12.042.
  • Pereira, S. G., A. Guedes, I. Abreu, and H. Ribeiro. 2021. Testing the Raman parameters of pollen spectra in automatic identification. Aerobiologia (Bologna). 37 (1):15–28. doi:10.1007/s10453-020-09669-1.
  • Pöhlker, C., J. A. Huffman, J.-D. Förster, and U. Pöschl. 2013. Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen. Atmos. Meas. Tech. 6 (12):3369–92. doi:10.5194/amt-6-3369-2013.
  • Pöhlker, C., J. A. Huffman, and U. Pöschl. 2012. Autofluorescence of atmospheric bioaerosols – Fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5 (1):37–71. doi:10.5194/amt-5-37-2012.
  • Ranzato, M., P. E. Taylor, J. M. House, R. C. Flagan, Y. LeCun, and P. Perona. 2007. Automatic recognition of biological particles in microscopic images. Pattern Recognit. Lett. 28 (1):31–9. doi:10.1016/j.patrec.2006.06.010.
  • Richter, R., U. Berger, S. Dullinger, F. Essl, M. Leitner, M. Smith, and G. Vogl. 2013. Spread of invasive ragweed: Climate change, management and how to reduce allergy costs. J. Appl. Ecol. 50 (6):1422–30. doi:10.1111/1365-2664.12156.
  • Rodriguez-Damian, M., E. Cernadas, A. Formella, M. Fernández-Delgado, and P. De Sa-Otero. 2006. Automatic detection and classification of grains of pollen based on shape and texture. IEEE Trans. Syst, Man, Cybern. C 36 (4):531–42. doi:10.1109/TSMCC.2005.855426.
  • RStudio Team. 2016. RStudio: Integrated development for R. Boston, MA: RStudio, Inc. doi:10.1007/978-81-322-2340-5.
  • Ruske, S., D. Topping, V. Foot, P. Kaye, W. Stanley, I. Crawford, A. Morse, and M. Gallagher. 2017. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer. Atmos. Meas. Tech. 10 (2):695–708. doi:10.5194/amt-10-695-2017.
  • Ruske, S., D. O. Topping, V. E. Foot, A. P. Morse, and M. W. Gallagher. 2018. Machine learning for improved data analysis of biological aerosol using the WIBS. Atmos. Meas. Tech. 11 (11):6203–30. doi:10.5194/amt-11-6203-2018.
  • Saari, S., T. Reponen, and J. Keskinen. 2014. Performance of two fluorescence-based real-time bioaerosol detectors: bioscout vs. UVAPS. Aerosol Sci. Technol. 48 (4):371–8. doi:10.1080/02786826.2013.877579.
  • Šantl-Temkiv, T., B. Sikoparija, T. Maki, F. Carotenuto, P. Amato, M. S. Yao, C. E. Morris, R. Schnell, R. Jaenicke, C. Pohlker, et al. 2020. Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Aerosol Sci. Technol. 54 (5):520–46. doi:10.1080/02786826.2019.1676395.
  • Satterwhite, M. B. 1990. Spectral luminescence of plant pollen. In 10th Annual International Symposium on Geoscience and Remote Sensing, 1945–1948. doi:10.1109/IGARSS.1990.688906.
  • Šaulienė, I., L. Šukienė, G. Daunys, G. Valiulis, L. Vaitkevičius, P. Matavulj, S. Brdar, M. Panic, B. Sikoparija, B. Clot, et al. 2019. Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps. Atmos. Meas. Tech. 12 (6):3435–52. doi:10.5194/amt-12-3435-2019.
  • Šaulienė, I., L. Šukienė, G. Daunys, G. Valiulis, L. Vaitkevičius, P. Matavulj, S. Brdar, M. Panic, B. Sikoparija, B. Clot, et al. 2019. Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps. Atmos. Meas. Tech. Discuss. 2:1–33. doi:10.5194/amt-2018-432.
  • Sauvageat, E., Y. Zeder, K. Auderset, B. Calpini, B. Clot, B. Crouzy, T. Konzelmann, G. Lieberherr, F. Tummon, and K. Vasilatou. 2020. Real-time pollen monitoring using digital holography. Atmos. Meas. Tech. 13 (3):1539–50. doi:10.5194/amt-13-1539-2020.
  • Savage, N., and J. A. Huffman. 2018. Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques. Atmos. Meas. Tech. 11 (8):4929–42. doi:10.5194/amt-11-4929-2018.
  • Savage, N., C. Krentz, T. Könemann, T. Han, G. Mainelis, C. Pöhlker, and J. A. Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–302. doi:10.5194/amt-10-4279-2017.
  • Sevillano, V., K. Holt, and J. L. Aznarte. 2020. Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS One 15 (6):e0229751. doi:10.1371/journal.pone.0229751.
  • Šikoparija, B., O. Marko, M. Panić, D. Jakovetić, and P. Radišić. 2018. How to prepare a pollen calendar for forecasting daily pollen concentrations of Ambrosia, Betula and Poaceae? Aerobiologia (Bologna). 34 (2):203–17. doi:10.1007/s10453-018-9507-9.
  • Sofiev, M., and K.-C. Bergmann, eds. 2012. Allergenic pollen: A review of the production, release, distribution and health impacts.
  • Songnuan, W. 2013. Wind-pollination and the roles of pollen allergenic proteins. Asian Pacific J. Allergy Immunol. 31 (4):261. doi:10.12932/AP0287.31.4.2013.
  • Stillman, E. C, and J. R. Flenley. 1996. The needs and prospects for automation in palynology. Quat. Sci. Rev. 15 (1):1–5. doi:10.1016/0277-3791(95)00076-3.
  • Suanno, C., I. Aloisi, D. Fernández-González, and S. Del Duca. 2021. Monitoring techniques for pollen allergy risk assessment. Environ. Res. 197:111109. doi:10.1016/j.envres.2021.111109.
  • Swanson, B., and J. A. Huffman. 2018. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Opt. Express. 26 (3):3646–60. doi:10.1364/oe.26.003646.
  • Swanson, B., and J. A. Huffman. 2020. Pollen clustering strategies using a newly developed single-particle fluorescence spectrometer. Aerosol Sci. Technol. 54 (4):426–45. doi:10.1080/02786826.2019.1711357.
  • Tešendić, D., D. Boberić Krstićev, P. Matavulj, S. Brdar, M. Panić, V. Minić, and B. Šikoparija. 2022. RealForAll: real-time system for automatic detection of airborne pollen. Enterp. Inf. Syst. 16 (5):1–17. doi:10.1080/17517575.2020.1793391.
  • Tseng, Y.-T., and S. Kawashima. 2019. Applying a pollen forecast algorithm to the Swiss Alps clarifies the influence of topography on spatial representativeness of airborne pollen data. Atmos. Environ. 212:153–62. doi:10.1016/j.atmosenv.2019.05.052.
  • Tummon, F., S. Adamov, B. Clot, B. Crouzy, M. Gysel-Beer, S. Kawashima, G. Lieberherr, J. Manzano, E. Markey, A. Moallemi, et al. 2021a. A first evaluation of multiple automatic pollen monitors run in parallel. Aerobiologia (Bologna). (Special Issue: Autopollen):1–16 doi:10.1007/s10453-021-09729-0.
  • Tummon, F., L. Alados Arboledas, M. Bonini, B. Guinot, M. Hicke, C. Jacob, V. Kendrovski, W. McCairns, E. Petermann, V.-H. Peuch, et al. 2021b. The need for Pan-European automatic pollen and fungal spore monitoring: A stakeholder workshop position paper. Clin. Transl. Allergy 11 (3):12015.
  • USDA. 2016. PLANTS Database | USDA PLANTS. Plant Guid. https://plants.usda.gov/home
  • Vandenplas, O., D. Vinnikov, P. D. Blanc, I. Agache, C. Bachert, M. Bewick, L. O. Cardell, P. Cullinan, P. Demoly, A. Descatha, et al. 2018. Impact of rhinitis on work productivity: A systematic review. J. Allergy Clin. Immunol. Pract. 6 (4):1274–86.e9. doi:10.1016/j.jaip.2017.09.002.
  • Veselovskii, I., Q. Y. Hu, P. Goloub, T. Podvin, M. Korenskiy, O. Pujol, O. Dubovik, and A. Lopatin. 2020. Combined use of Mie-Raman and fluorescence lidar observations for improving aerosol characterization: Feasibility experiment. Atmos. Meas. Tech. 13 (12):6691–701. doi:10.5194/amt-13-6691-2020.
  • Weber, M, and S. Ulrich. 2017. PalDat 3.0–second revision of the database, including a free online publication tool. Grana 56 (4):257–62. doi:10.1080/00173134.2016.1269188.
  • Wlodarski, M., M. Kaliszewski, M. Kwasny, K. Kopczynski, Z. Zawadzki, Z. Mierczyk, J. Mlynczak, E. Trafny, and M. Szpakowska. 2006. Fluorescence excitation-emission matrices of selected biological materials. In Optically Based Biological and Chemical Detection for Defence III, vol. 6398, Stockholm, Sweden. doi:10.1117/12.687872.
  • Wozniak, M. C., and A. L. Steiner. 2017. A prognostic pollen emissions model for climate models (PECM1.0). Geosci. Model Dev. 10 (11):4105–27. doi:10.5194/gmd-10-4105-2017.
  • Wu, Y., A. Calis, Y. Luo, C. Chen, M. Lutton, Y. Rivenson, X. Lin, H. C. Koydemir, Y. Zhang, H. Wang, et al. 2018. Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 5 (11):4617–27. doi:10.1021/acsphotonics.8b01109.
  • Zhang, M., H. Su, G. Li, U. Kuhn, S. Li, T. Klimach, T. Hoffmann, P. Fu, U. Pöschl, and Y. Cheng. 2021. High-resolution fluorescence spectra of airborne biogenic secondary organic aerosols: Comparisons to primary biological aerosol particles and implications for single-particle measurements. Environ. Sci. Technol. 55 (24):16747–56. doi:10.1021/acs.est.1c02536.
  • Zhang, Y., and A. L. Steiner. 2022. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat. Commun. 13 (1):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.