910
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Measurement of number and mass size distributions of light-absorbing iron oxide aerosols in liquid water with a modified single-particle soot photometer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 35-49 | Received 03 May 2022, Accepted 20 Oct 2022, Published online: 28 Nov 2022

References

  • Adachi, K., N. Oshima, S. Ohata, A. Yoshida, N. Moteki, and M. Koike. 2021. Compositions and mixing states of aerosol particles by aircraft observations in the Arctic springtime, 2018. Atmos. Chem. Phys. 21 (5):3607–26. doi:10.5194/acp-21-3607-2021.
  • Bhatia, M., E. B. Kujawinski, S. B. Das, C. F. Breier, P. B. Henderson, and M. A. Charette. 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geosci. 6 (4):274–8. doi:10.1038/ngeo1746.
  • Fu, H., J. Lin, G. Shang, W. Dong, V. H. Grassian, G. R. Carmichael, Y. Li, and J. Chen. 2012. Solubility of iron from combustion source particles in acidic media linked to iron speciation. Environ. Sci. Technol. 46 (20):11119–27. doi:10.1021/es302558m.
  • Goto-Azuma, K., T. Homma, T. Saruya, F. Nakazawa, Y. Komuro, N. Nagatsuka, M. Hirabayashi, Y. Kondo, M. Koike, T. Aoki, et al. 2021. Studies on the variability of the Greenland ice sheet and climate. Polar Sci. 27:100557. doi:10.1016/j.polar.2020.100557.
  • Hansell, R. A., Jr., J. S. Reid, S. C. Tsay, T. L. Roush, and O. V. Kalashnikova. 2011. A sensitivity study on the effects of particle chemistry, asphericity and size on the mass extinction efficiency of mineral dust in the earth’s atmosphere: From the near to thermal IR. Atmos. Chem. Phys. 11 (4):1527–47. doi:10.5194/acp-11-1527-2011.
  • Ito, A., G. Lin, and J. E. Penner. 2018. Radiative forcing by light-absorbing aerosols of pyrogenetic iron oxides. Sci. Rep. 8 (1):7347. doi:10.1038/s41598-018-25756-3.
  • Iwamoto, Y., Y. Narita, A. Tsuda, and M. Uematsu. 2009. Single particle analysis of oceanic suspended matter during the SEEDS II iron fertilization experiment. Mar. Chem. 113 (3-4):212–8. doi:10.1016/j.marchem.2009.02.002.
  • Jickells, T. D., Z. S. An, K. K. Andersen, A. R. Baker, G. Bergametti, N. Brooks, J. J. Cao, P. W. Boyd, R. A. Duce, K. A. Hunter, et al. 2005. Global iron connections between dust, ocean biogeochemistry and climate. Science 308 (5718):67–71. doi:10.1126/science.1105959.
  • Katich, J. M., A. E. Perring, and J. P. Schwarz. 2017. Optimized detection of particulates from liquid samples in the aerosol phase: Focus on black carbon. Aerosol Sci. Technol. 51 (5):543–53. doi:10.1080/02786826.2017.1280597.
  • Komuro, Y., F. Nakazawa, M. Hirabayashi, K. Goto-Azuma, N. Nagatsuka, W. Shigeyama, S. Matoba, T. Homma, J. P. Steffensen, and D. Dahl-Jensen. 2021. Temporal and spatial variabilities in surface mass balance at the EGRIP site, Greenland from 2009 to 2017. Polar Sci. 27:100568. doi:10.1016/j.polar.2020.100568.
  • Kulkarni, P., P. A. Baron, and K. Willeke. 2011. Aerosol measurement: Principles, techniques, and applications, Hoboken, NJ: John Wiley & Sons.
  • Lamb, K. D. 2019. Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning. Atmos. Meas. Tech. 12 (7):3885–906. doi:10.5194/amt-12-3885-2019.
  • Lamb, K. D., H. Matsui, J. M. Katich, A. E. Perring, J. R. Spackman, B. Weinzierl, M. Dollner, and J. P. Schwarz. 2021. Global-scale constraints on light-absorbing anthropogenic iron oxide aerosols. NPJ Clim. Atmos. Sci. 4 (1):15. doi:10.1038/s41612-021-00171-0.
  • Machemer, S. D. 2004. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities. Environ. Sci. Technol. 38 (2):381–9. doi:10.1021/es020897v.
  • Matsui, H., N. M. Mahowald, N. Moteki, D. S. Hamilton, S. Ohata, A. Yoshida, M. Koike, R. A. Scanza, and M. G. Flanner. 2018. Anthropogenic combustion iron as a complex climate forcer. Nat. Commun. 9 (1):1593. doi:10.1038/s41467-018-03997-0.
  • Mori, T., K. Goto-Azuma, Y. Kondo, Y. Ogawa-Tsukagawa, K. Miura, M. Hirabayashi, N. Oshima, M. Koike, K. Kupiainen, N. Moteki, et al. 2019. Black carbon and inorganic aerosols in Arctic snowpack. JGR. Atmos. 124 (23):13325–56. doi:10.1029/2019JD030623.
  • Mori, T., Y. Kondo, S. Ohata, K. Goto-Azuma, K. Fukuda, Y. Ogawa-Tsukagawa, N. Moteki, A. Yoshida, M. Koike, P. R. Sinha, et al. 2021. Seasonal variation of wet deposition of black carbon at Ny-Ålesund, Svalbard. Geophys. Res. Atmos. 126 (12):e2020JD034110. doi:10.1029/2020JD034110.
  • Mori, T., Y. Kondo, S. Ohata, N. Moteki, H. Matsui, N. Oshima, and A. Iwasaki. 2014. Wet deposition of black carbon at a remote site in the East China Sea. J. Geophys. Res. Atmos. 119 (17):10485–98. doi:10.1002/2014JD022103.
  • Mori, T., N. Moteki, S. Ohata, M. Koike, K. Goto-Azuma, Y. Miyazaki, and Y. Kondo. 2016. Improved technique for measuring the size distribution of black carbon particles in liquid water. Aerosol Sci. Technol. 50 (3):242–54. doi:10.1080/02786826.2016.1147644.
  • Moteki, N., K. Adachi, S. Ohata, A. Yoshida, T. Harigaya, M. Koike, and Y. Kondo. 2017. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nat. Commun. 8:15329. doi:10.1038/ncomms15329.
  • Moteki, N, and Y. Kondo. 2010. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Sci. Technol. 44 (8):663–75. doi:10.1080/02786826.2010.484450.
  • Nagatsuka, N., K. Goto-Azuma, A. Tsushima, K. Fujita, S. Matoba, Y. Onuma, R. Dallmayr, M. Kadota, M. Hirabayashi, J. Ogata, et al. 2021. Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years. Clim. Past 17 (3):1341–62. doi:10.5194/cp-17-1341-2021.
  • Nowak, S., S. Lafon, S. Caquineau, E. Journet, and B. Laurent. 2018. Quantitative study of the mineralogical composition of mineral dust aerosols by X-ray diffraction. Talanta 186:133–9. doi:10.1016/j.talanta.2018.03.059.
  • Ohata, S., A. Yoshida, N. Moteki, K. Adachi, Y. Takahashi, M. Kurisu, and M. Koike. 2018. Abundance of light‐absorbing anthropogenic iron oxide aerosols in the urban atmosphere and their emission sources. J. Geophys. Res. Atmos. 123:8115–34. doi:10.1029/2018JD028363.
  • Sanderson, P., S. S. Su, I. T. H. Chang, J. M. D. Saborit, D. M. Kepaptsoglou, R. J. M. Weber, and R. M. Harrison. 2016. Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment. Atmos. Environ. 140:167–75. doi:10.1016/j.atmosenv.2016.05.040.
  • Schnaiter, M., C. Linke, I. Ibrahim, A. Kiselev, F. Waitz, T. Leisner, S. Norra, and T. Rehm. 2019. Specifying the light-absorbing properties of aerosol particles in fresh snow samples, collected at the Environmental Research Station Schneefernerhaus (UFS), Zugspitze. Atmos. Chem. Phys. 19 (16):10829–44. doi:10.5194/acp-19-10829-2019.
  • Schwarz, J. P., J. R. Spackman, R. S. Gao, A. E. Perring, E. Cross, T. B. Onasch, A. Ahern, W. Wrobel, P. Davidovits, J. Olfert, et al. 2010. The detection efficiency of the single particle soot photometer. Aerosol Sci. Technol. 44 (8):612–28. doi:10.1080/02786826.2010.481298.
  • Yoshida, A., N. Moteki, S. Ohata, T. Mori, M. Koike, Y. Kondo, H. Matsui, N. Oshima, A. Takami, and K. Kita. 2020. Abundances and microphysical properties of light-absorbing iron oxide and black carbon aerosols over East Asia and the Arctic. J. Geophys. Res. Atmos. 125 (15):e2019JD032301. doi:10.1029/2019JD032301.
  • Yoshida, A., N. Moteki, S. Ohata, T. Mori, R. Tada, P. Dagsson-Waldhauserová, and Y. Kondo. ‐ 2016. Detection of light-absorbing iron oxide particles using a modified single‐particle soot photometer. Aerosol Sci. Technol. 50 (3):1–4. doi:10.1080/02786826.2016.1146402.
  • Yoshida, A., S. Ohata, N. Moteki, K. Adachi, T. Mori, M. Koike, and A. Takami. 2018. Abundance and emission flux of the anthropogenic iron oxide aerosols from the East Asian continental outflow. J. Geophys. Res. Atmos. 123 (19):11,194–209. doi:10.1029/2018JD028665.