297
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of selected cationic, anionic, and nonionic surfactants on hygroscopic growth of individual aqueous coarse mode aerosol particles

ORCID Icon & ORCID Icon
Pages 63-76 | Received 23 May 2022, Accepted 30 Oct 2022, Published online: 18 Nov 2022

References

  • Abbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler. 2006. Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science 313 (5794):1770–3. doi:10.1126/science.1129726.
  • Andreae, M. O., and D. Rosenfeld. 2008. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Rev 89:1–2. doi:10.1016/j.earscirev.2008.03.001.
  • Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. 1986. Observation of a single-beam gradient-force optical trap for dielectric particles in air. Opt. Lett. 11 (5):288–90. doi:10.1364/OL.11.000288.
  • Basu Ray, G., I. Chakraborty, S. Ghosh, and S. P. Moulik. 2007. A critical and comprehensive assessment of interfacial and bulk properties of aqueous binary mixtures of anionic surfactants, sodium dodecylsulfate, and sodium dodecylbenzenesulfonate. Colloid Polym. Sci. 285 (4):457–69. doi:10.1007/s00396-006-1589-1.
  • Blanchard, D. C. 1964. Sea-to-air transport of surface active material. Science 146 (3642):396–7. doi:10.1126/science.146.3642.396.
  • Bohren, C. F., and D. R. Huffman. 1983. Absorption and scattering of light by small particles. New York: Wiley.
  • Boyer, H. C., B. R. Bzdek, J. P. Reid, and C. S. Dutcher. 2017. Statistical thermodynamic model for surface tension of organic and inorganic aqueous mixtures. J. Phys. Chem. A 121 (1):198–205. doi:10.1021/acs.jpca.6b10057.
  • Boyer, H. C., K. Gorkowski, and R. C. Sullivan. 2020. In situ pH measurements of individual levitated microdroplets using aerosol optical tweezers. Anal. Chem. 92 (1):1089–96. doi:10.1021/acs.analchem.9b04152.
  • Buckingham, S. A., C. J. Garvey, and G. G. Warr. 1993. Effect of head-group size on micellization and phase behavior in quaternary ammonium surfactant systems. J. Phys. Chem. 97 (39):10236–44. doi:10.1021/j100141a054.
  • Bzdek, B. R., R. M. Power, S. H. Simpson, J. P. Reid, and C. P. Royall. 2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 7 (1):274–85. doi:10.1039/C5SC03184B.
  • Bzdek, B. R., J. P. Reid, J. Malila, and N. L. Prisle. 2020. The surface tension of surfactant-containing, finite volume droplets. Proc. Natl. Acad. Sci. USA. 117 (15):8335–43. doi:10.1073/pnas.1915660117.
  • Chang, Y. P., S. J. Wu, M. S. Lin, C. Y. Chiang, and G. G. Huang. 2021. Ionic-strength and pH dependent reactivities of ascorbic acid toward ozone in aqueous micro-droplets studied using aerosol optical tweezers. Phys. Chem. Chem. Phys. 23 (16):10108–17. doi:10.1039/D0CP06493A.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler. 1998. Thermodynamic model of the system H+-NH4+-SO42-NO 3–H2O at tropospheric temperatures. J. Phys. Chem. A 102 (12):2137–54. doi:10.1021/jp973042r.
  • Cochran, R. E., O. Laskina, T. Jayarathne, A. Laskin, J. Laskin, P. Lin, C. Sultana, C. Lee, K. A. Moore, C. D. Cappa, et al. 2016. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol. Environ. Sci. Technol. 50 (5):2477–86. doi:10.1021/acs.est.5b04053.
  • David, G., E. A. Parmentier, I. Taurino, and R. Signorell. 2020. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering. Sci. Rep. 10 (1):7929. doi:10.1038/s41598-020-64886-5.
  • DeMott, P. J., T. C. J. Hill, C. S. McCluskey, K. A. Prather, D. B. Collins, R. C. Sullivan, M. J. Ruppel, R. H. Mason, V. E. Irish, T. Lee, et al. 2016. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA. 113 (21):5797–803. doi:10.1073/pnas.1514034112.
  • Diamant, H., G. Ariel, and D. Andelman. 2001. Kinetics of surfactant adsorption: the free energy approach. Colloids Surfaces A Physicochem. Eng. Asp 183–185:259–76. doi:10.1016/S0927-7757(01)00553-2.
  • Eastoe, J., and J. S. Dalton. 2000. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid Interface Sci. 85 (2–3):103–44. doi:10.1016/S0001-8686(99)00017-2.
  • English, J. M., J. E. Kay, A. Gettelman, X. Liu, Y. Wang, Y. Zhang, and H. Chepfer. 2014. Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5. J. Clim. 27 (13):5174–97. doi:10.1175/JCLI-D-13-00608.1.
  • Eriksson, J. C., and S. Ljunggren. 1989. A molecular theory of the surface tension of surfactant solutions. Colloids Surfaces 38 (1):179–203. doi:10.1016/0166-6622(89)80153-2.
  • Forestieri, S. D., S. M. Staudt, T. M. Kuborn, K. Faber, C. R. Ruehl, T. H. Bertram, and C. D. Cappa. 2018. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics. Atmos. Chem. Phys. 18 (15):10985–1005. doi:10.5194/acp-18-10985-2018.
  • Friese, E., and A. Ebel. 2010. Temperature dependent thermodynamic model of the system H +-NH4+-Na+-SO42-NO3-Cl–H2O. J. Phys. Chem. A 114 (43):11595–631. doi:10.1021/jp101041j.
  • Frossard, A. A., W. Li, V. Gérard, B. Nozière, and R. C. Cohen. 2018. Influence of surfactants on growth of individual aqueous coarse mode aerosol particles. Aerosol Sci. Technol. 52 (4):459–69. doi:10.1080/02786826.2018.1424315.
  • Frossard, A. A., V. Gérard, P. Duplessis, J. D. Kinsey, X. Lu, Y. Zhu, J. Bisgrove, J. R. Maben, M. S. Long, R. Y.-W. Chang, et al. 2019. Properties of seawater surfactants associated with primary marine aerosol particles produced by bursting bubbles at a model air-sea interface. Environ. Sci. Technol. 53 (16):9407–17. doi:10.1021/acs.est.9b02637.
  • Gérard, V., B. Nozière, C. Baduel, L. Fine, A. A. Frossard, and R. C. Cohen. 2016. Anionic, cationic, and nonionic surfactants in atmospheric aerosols from the Baltic Coast at Askö, Sweden: Implications for cloud droplet activation. Environ. Sci. Technol. 50 (6):2974–82. doi:10.1021/acs.est.5b05809.
  • Gérard, V., B. Noziere, L. Fine, C. Ferronato, D. K. Singh, A. A. Frossard, R. C. Cohen, E. Asmi, H. Lihavainen, N. Kivekäs, et al. 2019. Concentrations and adsorption isotherms for amphiphilic surfactants in PM1 aerosols from different regions of Europe. Environ. Sci. Technol. 53 (21):12379–88. doi:10.1021/acs.est.9b03386.
  • Gorkowski, K., N. M. Donahue, and R. C. Sullivan. 2020. Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles. Chem 6 (1):204–20. doi:10.1016/j.chempr.2019.10.018.
  • Haddrell, A. E., R. E. H. Miles, B. R. Bzdek, J. P. Reid, R. J. Hopkins, and J. S. Walker. 2017. Coalescence sampling and analysis of aerosols using aerosol optical tweezers. Anal. Chem. 89 (4):2345–52. doi:10.1021/acs.analchem.6b03979.
  • Hayes, M. E., M. Bourrel, M. M. El-Emary, R. S. Schechter, and W. H. Wade. 1979. Interfacial tension and behavior of nonionic surfactants. Soc. Pet. Eng. AIME J. 19 (6):349–56. doi:10.2118/7581-PA.
  • Hopkins, R. J., L. Mitchem, A. D. Ward, and J. P. Reid. 2004. Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap. Phys. Chem. Chem. Phys. 6 (21):4924–7. doi:10.1039/b414459g.
  • Hu, D., A. Mafi, and K. C. Chou. 2016. Revisiting the thermodynamics of water surfaces and the effects of surfactant head group. J. Phys. Chem. B 120 (9):2257–61. doi:10.1021/acs.jpcb.5b11717.
  • Hua, X. Y., and M. J. Rosen. 1988. Dynamic surface tension of aqueous surfactant solutions. I. Basic parameters. J. Colloid Interface Sci. 124 (2):652–9. doi:10.1016/0021-9797(88)90203-2.
  • Karumbamkandathil, A., S. Ghosh, U. Anand, P. Saha, M. Mukherjee, and S. Mukherjee. 2014. Micelles of benzethonium chloride undergoes spherical to cylindrical shape transformation: An intrinsic fluorescence and calorimetric approach. Chem. Phys. Lett. 593:115–21. doi:10.1016/j.cplett.2014.01.005.
  • Knox, K. J. 2011. Light-induced processes in optically-tweezed aerosol droplets. Thesis, Springer-Verlag, Berlin Heidelberg, 1–204. doi:10.1007/978-3-642-16348-7.
  • Köhler, H. 1936. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32:1152–61. doi:10.1039/TF936320.
  • Kronberg, B., K. Holmberg, and B. Lindman. 2014. Surface chemistry of surfactants and polymers, 1–479. John Wiley and Sons, Ltd. doi:10.1002/9781118695968.
  • Latif, M. T., and P. Brimblecombe. 2004. Surfactants in atmospheric aerosols. Environ. Sci. Technol. 38 (24):6501–6. doi:10.1021/es049109n.
  • Lewis, E. R., and S. E. Schwartz. 2004. Sea salt aerosol production: Mechanisms, methods, measurements and models—A critical review. Geophys. Monograph Ser. 152:299–344.
  • Li, Z. X., J. R. Lu, R. K. Thomas, and J. Penfold. 1995. Structure of a layer of AOT adsorbed at the air/liquid interface at the critical micelle concentration determined by neutron reflection. In Trends in colloid and interface science IX, eds. J. Appell and G. Porte, Progress in Colloid & Polymer Science, vol. 98, 243–7. Steinkopff.
  • Lin, J. J., T. B. Kristensen, S. M. Calderón, J. Malila, and N. L. Prisle. 2020. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant. Environ. Sci. Process. Impacts 22 (2):271–84. doi:10.1039/c9em00426b.
  • Mitchem, L., J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid. 2006. Spectroscopy of growing and evaporating water droplets: Exploring the variation in equilibrium droplet size with relative humidity. J. Phys. Chem. A 110 (26):8116–25. doi:10.1021/jp061135f.
  • Mitchem, L., and J. P. Reid. 2008. Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. Chem. Soc. Rev. 37 (4):756. doi:10.1039/b609713h.
  • Noziere, B., C. Baduel, and J.-L. Jaffrezo. 2014. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation. Nat. Commun. 5:3335. doi:10.1038/ncomms4335.
  • Ovadnevaite, J., D. Ceburnis, G. Martucci, J. Bialek, C. Monahan, M. Rinaldi, M. C. Facchini, H. Berresheim, D. R. Worsnop, and C. O'Dowd. 2011. Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity. Geophys. Res. Lett. 38 (21):1–5. doi:10.1029/2011GL048869.
  • Ovadnevaite, J., A. Zuend, A. Laaksonen, K. J. Sanchez, G. Roberts, D. Ceburnis, S. Decesari, M. Rinaldi, N. Hodas, M. C. Facchini, et al. 2017. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 546 (7660):637–41. doi:10.1038/nature22806.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi:10.5194/acp-7-1961-2007.
  • Petters, S. S., and M. D. Petters. 2016. Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols. J. Geophys. Res. 121:1878–95. doi:10.1002/2015JD024090.
  • Phillips, J. N. 1955. The energetics of micelle formation. Trans. Faraday Soc. 51:561–9. doi:10.1039/tf9555100561.
  • Pöschl, U. 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chemie - Int. Ed. 44 (46):7520–40.
  • Prisle, N. L., A. Asmi, D. Topping, A. I. Partanen, S. Romakkaniemi, M. Dal Maso, M. Kulmala, A. Laaksonen, K. E. J. Lehtinen, G. McFiggans, et al. 2012. Surfactant effects in global simulations of cloud droplet activation. Geophys. Res. Lett. 39 (5):1–5. doi:10.1029/2011GL050467.
  • Qazi, M. J., R. W. Liefferink, S. J. Schlegel, E. H. G. Backus, D. Bonn, and N. Shahidzadeh. 2017. Influence of surfactants on sodium chloride crystallization in confinement. Langmuir 33 (17):4260–8. doi:10.1021/acs.langmuir.7b00244.
  • Qazi, M. J., S. J. Schlegel, E. H. G. Backus, M. Bonn, D. Bonn, and N. Shahidzadeh. 2020. Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir 36 (27):7956–64. doi:10.1021/acs.langmuir.0c01211.
  • Quinn, P. K., T. S. Bates, K. S. Schulz, D. J. Coffman, A. A. Frossard, L. M. Russell, W. C. Keene, and D. J. Kieber. 2014. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci 7 (3):228–32. doi:10.1038/ngeo2092.
  • Quinn, P. K., D. J. Coffman, J. E. Johnson, L. M. Upchurch, and T. S. Bates. 2017. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nat. Geosci. 10 (9):674–9. doi:10.1038/ngeo3003.
  • Quinn, P. K., D. B. Collins, V. H. Grassian, K. A. Prather, and T. S. Bates. 2015. Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev. 115 (10):4383–99. doi:10.1021/cr5007139.
  • Rafferty, A., K. Gorkowski, A. Zuend, and T. C. Preston. 2019. Optical deformation of single aerosol particles. Proc. Natl. Acad. Sci. USA. 116 (40):19880–6. doi:10.1073/pnas.1907687116.
  • Rosen, M. J. 1976. The relationship of structure to properties in surfactants. IV. Effectiveness in surface or interfacial tension reduction. J. Colloid Interface Sci. 56 (2):320–7. doi:10.1016/0021-9797(76)90257-5.
  • Ruehl, C. R., J. F. Davies, and K. R. Wilson. 2016. An interfacial mechanism for cloud droplet formation on organic aerosols. Science 351 (6280):1447–50. doi:10.1126/science.aad4889.
  • Sadeghi, R., and S. Shahabi. 2011. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions. J Chem. Thermodyn. 43 (9):1361–70. doi:10.1016/j.jct.2011.04.012.
  • Sood, A. K., and M. Aggarwal. 2018. Evaluation of micellar properties of sodium dodecylbenzene sulphonate in the presence of some salts. J. Chem. Sci. 130 (4). doi:10.1007/s12039-018-1446-z.
  • Sorjamaa, R., and A. Laaksonen. 2006. The influence of surfactant properties on critical supersaturations of cloud condensation nuclei. J. Aerosol Sci. 37 (12):1730–6. doi:10.1016/j.jaerosci.2006.07.004.
  • Sorjamaa, R., B. Svenningsson, T. Raatikainen, S. Henning, M. Bilde, and A. Laaksonen. 2004. The role of surfactants in Köhler theory reconsidered. Atmos. Chem. Phys. 4 (8). doi:10.5194/acp-4-2107-2004.
  • Sullivan, R. C., H. Boyer-Chelmo, K. Gorkowski, and H. Beydoun. 2020. Aerosol optical tweezers elucidate the chemistry, acidity, phase separations, and morphology of atmospheric microdroplets. Acc. Chem. Res. 53 (11):2498–509. doi:10.1021/acs.accounts.0c00407.
  • Summers, M. D., J. P. Reid, and D. Mcgloin. 2006. Optical guiding of aerosol droplets. Opt. Express. 14 (14):6373–80. doi:10.1364/OE.14.006373.
  • Tang, IN., A. C. Tridico, and K. H. Fung. 1997. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. 102 (D19):23269–75. doi:10.1029/97JD01806.
  • Tao, W. K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang. 2012. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50 (2): RG2001. doi:10.1029/2011RG000369.
  • Topping, D. O, and G. McFiggans. 2012. Tight coupling of particle size, number, and composition in atmospheric cloud droplet activation. Atmos. Chem. Phys. 12 (7):3253–60. doi:10.5194/acp-12-3253-2012.
  • Velinova, M., D. Sengupta, A. V. Tadjer, and S. J. Marrink. 2011. Sphere-to-rod transitions of nonionic surfactant micelles in aqueous solution modeled by molecular dynamics simulations. Langmuir 27 (23):14071–7. doi:10.1021/la203055t.
  • Vijayendran, B. R. 1979. Polymer polarity and surfactant adsorption. J. Appl. Polym. Sci. 23 (3):733–42. doi:10.1002/app.1979.070230308.
  • Xu, J., Y. Zhang, H. Chen, P. Wang, Z. Xie, Y. Yao, Y. Yan, and J. Zhang. 2013. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. J. Mol. Struct. 1052:50–6. doi:10.1016/j.molstruc.2013.07.049.
  • Zdziennicka, A., K. Szymczyk, J. Krawczyk, and B. Jańczuk. 2012. Activity and thermodynamic parameters of some surfactants adsorption at the water–air interface. Fluid Phase Equilib. 318:25–33. doi:10.1016/j.fluid.2012.01.014.
  • Zhu, X. 1986. Studies of sodium dodecylbenzenesulfonate-water-electrolyte interactions. Masters Theses. 2654, Eastern Illinois University. https://thekeep.eiu.edu/theses/2654/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.