1,530
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Atmospheric aging increases the cytotoxicity of bare soot particles in BEAS-2B lung cells

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 367-383 | Received 06 Nov 2022, Accepted 31 Jan 2023, Published online: 17 Feb 2023

References

  • Abdel-Shafy, H. I., and M. S. M. Mansour. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25:107–23. doi:10.1016/j.ejpe.2015.03.011.
  • Al Housseiny, H., M. Singh, S. Emile, M. Nicoleau, R. L. V. Wal, and P. Silveyra. 2020. Identification of toxicity parameters associated with combustion produced soot surface chemistry and particle structure by in vitro assays. Biomedicines 8 (9):345. doi:10.3390/biomedicines8090345.
  • An, J., Q. Zhou, G. Qian, T. Wang, M. Wu, T. Zhu, X. Qiu, Y. Shang, and J. Shang. 2017. Comparison of gene expression profiles induced by fresh or ozone-oxidized black carbon particles in A549 cells. Chemosphere 180:212–20. doi:10.1016/j.chemosphere.2017.04.001.
  • Andreae, M. O., and A. Gelencsér. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6:3131–48. doi:10.5194/acp-6-3131-2006.
  • Antiñolo, M., M. D. Willis, S. Zhou, and J. P. D. Abbatt. 2015. Connecting the oxidation of soot to its redox cycling abilities. Nat. Commun. 6:6812. doi:10.1038/ncomms7812.
  • Atwi, K., S. N. Wilson, A. Mondal, R. C. Edenfield, K. M. Symosko Crow, O. El Hajj, C. Perrie, C. K. Glenn, C. A. Easley, H. Handa, et al. 2022. Differential response of human lung epithelial cells to particulate matter in fresh and photochemically aged biomass-burning smoke. Atmos. Environ. 271:118929. doi:10.1016/j.atmosenv.2021.118929.
  • Barmet, P., J. Dommen, P. F. DeCarlo, T. Tritscher, A. P. Praplan, S. M. Platt, A. S. H. Prévôt, N. M. Donahue, and U. Baltensperger. 2012. Oh clock determination by proton transfer reaction mass spectrometry at an environmental chamber. Atmos. Meas. Tech. 5:647–56. doi:10.5194/amt-5-647-2012.
  • Bates, J. T., T. Fang, V. Verma, L. Zeng, R. J. Weber, P. E. Tolbert, J. Y. Abrams, S. E. Sarnat, M. Klein, J. A. Mulholland, et al. 2019. Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53 (8):4003–19. doi:10.1021/acs.est.8b03430.
  • Beamer, C. A., and D. M. Shepherd. 2013. Role of the aryl hydrocarbon receptor (ahr) in lung inflammation. Semin. Immunopathol. 35 (6):693–704. doi:10.1007/s00281-013-0391-7.
  • Bellouin, N., J. Quaas, E. Gryspeerdt, S. Kinne, P. Stier, D. Watson-Parris, O. Boucher, K. S. Carslaw, M. Christensen, A. L. Daniau, et al. 2020. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58:e2019RG000660. doi:10.1029/2019RG000660.
  • Bertrand, A., G. Stefenelli, E. A. Bruns, S. M. Pieber, B. Temime-Roussel, J. G. Slowik, A. S. H. Prévôt, H. Wortham, I. El Haddad, and N. Marchand. 2017. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmos. Environ. 169:65–79. doi:10.1016/j.atmosenv.2017.09.005.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos. 118:5380–552. doi:10.1002/jgrd.50171.
  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res.: Atmos. 109:D14203. doi:10.1029/2003JD003697.
  • Bongaerts, E., L. L. Lecante, H. Bové, M. B. J. Roeffaers, M. Ameloot, P. A. Fowler, and T. S. Nawrot. 2022. Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: An analysis of two independent population-based observational studies. Lancet. Planet. Health. 6 (10):e804–11. doi:10.1016/S2542-5196(22)00200-5.
  • Bruns, E. A., I. El Haddad, A. Keller, F. Klein, N. K. Kumar, S. M. Pieber, J. C. Corbin, J. G. Slowik, W. H. Brune, U. Baltensperger, et al. 2015. Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition. Atmos. Meas. Tech. 8:2315–32. doi:10.5194/amt-8-2315-2015.
  • Cape, J. N., M. Coyle, and P. Dumitrean. 2012. The atmospheric lifetime of black carbon. Atmos. Environ. 59:256–63. doi:10.1016/j.atmosenv.2012.05.030.
  • Castañeda, A. R., K. E. Pinkerton, K. J. Bein, A. Magaña-Méndez, H. T. Yang, P. Ashwood, and C. F. A. Vogel. 2018. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicol. Lett. 292:85–96. doi:10.1016/j.toxlet.2018.04.020.
  • Cervellati, F., B. Woodby, M. Benedusi, F. Ferrara, A. Guiotto, and G. Valacchi. 2020. Evaluation of oxidative damage and Nrf2 activation by combined pollution exposure in lung epithelial cells. Environ. Sci. Pollut. Res. Int. 27 (25):31841–53. doi:10.1007/s11356-020-09412-w.
  • Chan, J. K. W., J. G. Charrier, S. D. Kodani, C. F. Vogel, S. Y. Kado, D. S. Anderson, C. Anastasio, and L. S. Van Winkle. 2013. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs. Part. Fibre Toxicol. 10:34. doi:10.1186/1743-8977-10-34.
  • Chatterjee, N., and G. C. Walker. 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58 (5):235–63. doi:10.1002/em.22087.
  • Cheng, Z., H. Chu, S. Wang, Y. Huang, X. Hou, Q. Zhang, W. Zhou, L. Jia, Q. Meng, L. Shang, et al. 2019. Tak1 knock-down in macrophage alleviate lung inflammation induced by black carbon and aged black carbon. Environ. Pollut. 253:507–15. doi:10.1016/j.envpol.2019.06.096.
  • Chow, J. C., J. G. Watson, L. W. A. Chen, M. C. O. Chang, N. F. Robinson, D. Trimble, and S. Kohl. 2007. The improve_a temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 57 (9):1014–23. doi:10.3155/1047-3289.57.9.1014.
  • Chowdhury, P. H., Q. He, T. Lasitza Male, W. H. Brune, Y. Rudich, and M. Pardo. 2018. Exposure of lung epithelial cells to photochemically aged secondary organic aerosol shows increased toxic effects. Environ. Sci. Technol. Lett. 5:424–30. doi:10.1021/acs.estlett.8b00256.
  • Chowdhury, S., A. Pozzer, A. Haines, K. Klingmüller, T. Münzel, P. Paasonen, A. Sharma, C. Venkataraman, and J. Lelieveld. 2022. Global health burden of ambient pm(2.5) and the contribution of anthropogenic black carbon and organic aerosols. Environ. Int. 159:107020. doi:10.1016/j.envint.2021.107020.
  • Chu, H., W. Hao, Z. Cheng, Y. Huang, S. Wang, J. Shang, X. Hou, Q. Meng, Q. Zhang, L. Jia, et al. 2018. Black carbon particles and ozone-oxidized black carbon particles induced lung damage in mice through an interleukin-33 dependent pathway. Sci. Total Environ. 644:217–28. doi:10.1016/j.scitotenv.2018.06.329.
  • Chuang, H. C., T. P. Jones, S. C. Lung, and K. A. BéruBé. 2011. Soot-driven reactive oxygen species formation from incense burning. Sci. Total Environ. 409 (22):4781–7. doi:10.1016/j.scitotenv.2011.07.041.
  • Corbin, J. C., U. Lohmann, B. Sierau, A. Keller, H. Burtscher, and A. A. Mensah. 2015. Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmos. Chem. Phys. 15:11885–907. doi:10.5194/acp-15-11885-2015.
  • Czech, H., T. Miersch, J. Orasche, G. Abbaszade, O. Sippula, J. Tissari, B. Michalke, J. Schnelle-Kreis, T. Streibel, J. Jokiniemi, et al. 2018. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances. Sci. Total Environ. 612:636–48. doi:10.1016/j.scitotenv.2017.08.263.
  • Czekala, L., R. Wieczorek, L. Simms, F. Yu, J. Budde, E. Trelles Sticken, K. Rudd, T. Verron, O. Brinster, M. Stevenson, et al. 2021. Multi-endpoint analysis of human 3d airway epithelium following repeated exposure to whole electronic vapor product aerosol or cigarette smoke. Curr. Res. Toxicol. 2:99–115. doi:10.1016/j.crtox.2021.02.004.
  • Dandajeh, H. A., M. Talibi, N. Ladommatos, and P. Hellier. 2022. Polycyclic aromatic hydrocarbon and soot emissions in a diesel engine and from a tube reactor. J. King Saud Univ. – Eng. Sci. 34:435–44. doi:10.1016/j.jksues.2020.12.007.
  • De Prins, S., E. Dons, M. Van Poppel, L. Int Panis, E. Van de Mieroop, V. Nelen, B. Cox, T. S. Nawrot, C. Teughels, G. Schoeters, et al. 2014. Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon. Environ. Int. 73:440–6. doi:10.1016/j.envint.2014.06.017.
  • Di Bucchianico, S., F. Cappellini, F. Le Bihanic, Y. Zhang, K. Dreij, and H. L. Karlsson. 2017. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 32 (1):127–37. doi:10.1093/mutage/gew030.
  • Donahue, N. M., J. H. Kroll, S. N. Pandis, and A. L. Robinson. 2012. A two-dimensional volatility basis set – part 2: Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys. 12:615–34. doi:10.5194/acp-12-615-2012.
  • Drumm, K., D. I. Attia, S. Kannt, P. Micke, R. Buhl, and K. Kienast. 2000. Soot-exposed mononuclear cells increase inflammatory cytokine mRNA expression and protein secretion in cocultured bronchial epithelial cells. Respiration 67 (3):291–7. doi:10.1159/000029513.
  • Dumax-Vorzet, A. F., M. Tate, R. Walmsley, R. H. Elder, and A. C. Povey. 2015. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis 30 (5):621–33. doi:10.1093/mutage/gev025.
  • Enekwizu, O. Y., A. Hasani, and A. F. Khalizov. 2021. Vapor condensation and coating evaporation are both responsible for soot aggregate restructuring. Environ. Sci. Technol. 55 (13):8622–30. doi:10.1021/acs.est.1c02391.
  • Farzad, K., B. Khorsandi, M. Khorsandi, O. Bouamra, and R. Maknoon. 2020. A study of cardiorespiratory related mortality as a result of exposure to black carbon. Sci. Total Environ. 725:138422. doi:10.1016/j.scitotenv.2020.138422.
  • Feng, J., M. Zhong, B. Xu, Y. Du, M. Wu, H. Wang, and C. Chen. 2014. Concentrations, seasonal and diurnal variations of black carbon in PM2.5 in Shanghai, China. Atmos. Res. 147–148:1–9. doi:10.1016/j.atmosres.2014.04.018.
  • Fuller, R., P. J. Landrigan, K. Balakrishnan, G. Bathan, S. Bose, O. M. Brauer, J. Caravanos, T. Chiles, A. Cohen, L. Corra, et al. 2022. Pollution and health: A progress update. Lancet Planet Health 6:e535–47. doi:10.1016/S2542-5196(22)00090-0.
  • Ghio, A. J., D. H. Gonzalez, S. E. Paulson, J. M. Soukup, L. A. Dailey, M. C. Madden, B. Mahler, S. A. Elmore, M. C. Schladweiler, and U. P. Kodavanti. 2020. Ozone reacts with carbon black to produce a fulvic acid-like substance and increase an inflammatory effect. Toxicol. Pathol. 48 (7):887–98. doi:10.1177/0192623320961017.
  • Gidhagen, L., P. Krecl, A. C. Targino, G. Polezer, R. H. M. Godoi, E. Felix, Y. A. Cipoli, I. Charres, F. Malucelli, A. Wolf, et al. 2021. An integrated assessment of the impacts of PM2.5 and black carbon particles on the air quality of a large Brazilian city. Air Qual. Atmos. Health 14:1455–73. doi:10.1007/s11869-021-01033-7.
  • Han, J., S. Wang, K. Yeung, D. Yang, W. Gu, Z. Ma, J. Sun, X. Wang, C.-W. Chow, A. W. H. Chan, et al. 2020. Proteome-wide effects of naphthalene-derived secondary organic aerosol in BEAS-2B cells are caused by short-lived unsaturated carbonyls. Proc. Natl. Acad. Sci. USA 117 (41):25386–95. doi:10.1073/pnas.2001378117.
  • Hartner, E., A. Paul, U. Käfer, H. Czech, T. Hohaus, T. Gröger, M. Sklorz, G. Jakobi, J. Orasche, S. Jeong, et al. 2022. On the complementarity and informative value of different electron ionization mass spectrometric techniques for the chemical analysis of secondary organic aerosols. ACS Earth Space Chem. 6:1358–74. doi:10.1021/acsearthspacechem.2c00039.
  • Holder, A. L., B. J. Carter, R. Goth-Goldstein, D. Lucas, and C. P. Koshland. 2012. Increased cytotoxicity of oxidized flame soot. Atmos. Pollut. Res. 3:25–31. doi:10.5094/APR.2012.001.
  • Holz, O., K. Heusser, M. Müller, H. Windt, K. Schwarz, C. Schindler, J. Tank, J. M. Hohlfeld, and J. Jordan. 2018. Airway and systemic inflammatory responses to ultrafine carbon black particles and ozone in older healthy subjects. J. Toxicol. Environ. Health. A 81 (13):576–88. doi:10.1080/15287394.2018.1463331.
  • Ihantola, T., M. M.-R. Hirvonen, H. Ihalainen, O. Hakkarainen, J. Sippula, S. Tissari, S. D. Bauer, N. Bucchianico, A. Rastak, J. Hartikainen, et al. 2022. Genotoxic and inflammatory effects of spruce and brown coal briquettes combustion aerosols on lung cells at the air-liquid interface. Sci. Total Environ. 806:150489. doi:10.1016/j.scitotenv.2021.150489.
  • Janssen, N. A., G. Hoek, M. Simic-Lawson, P. Fischer, L. van Bree, H. ten Brink, M. Keuken, R. W. Atkinson, H. R. Anderson, B. Brunekreef, et al. 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 119 (12):1691–9. doi:10.1289/ehp.1003369.
  • Jia, H., S. Li, L. Wu, S. Li, V. K. Sharma, and B. Yan. 2020. Cytotoxic free radicals on air-borne soot particles generated by burning wood or low-maturity coals. Environ. Sci. Technol. 54 (9):5608–18. doi:10.1021/acs.est.9b06395.
  • Jiang, N., H. Wen, M. Zhou, T. Lei, J. Shen, D. Zhang, R. Wang, H. Wu, S. Jiang, and W. Li. 2020. Low-dose combined exposure of carboxylated black carbon and heavy metal lead induced potentiation of oxidative stress, DNA damage, inflammation, and apoptosis in BEAS-2B cells. Ecotoxicol. Environ. Saf. 206:111388. doi:10.1016/j.ecoenv.2020.111388.
  • Kang, E., M. Root, D. Toohey, and W. Brune. 2007. Introducing the concept of potential aerosol mass (PAM). Atmos. Chem. Phys. 7:5727–44.
  • Li, J., J. Li, G. Wang, K. F. Ho, W. Dai, T. Zhang, Q. Wang, C. Wu, L. Li, L. Li, et al. 2021a. Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. J. Hazard. Mater. 401:123750. doi:10.1016/j.jhazmat.2020.123750.
  • Li, M., F. Bao, Y. Zhang, W. Song, C. Chen, and J. Zhao. 2018. Role of elemental carbon in the photochemical aging of soot. Proc. Natl. Acad. Sci. USA 115:7717–22.
  • Li, M., J. Li, Y. Zhu, J. Chen, M. O. Andreae, U. Pöschl, H. Su, M. Kulmala, C. Chen, Y. Cheng, et al. 2022. Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. Chem 8:2688–99. doi:10.1016/j.chempr.2022.06.011.
  • Li, Q., J. Shang, and T. Zhu. 2013. Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles. Atmos. Environ. 81:68–75. doi:10.1016/j.atmosenv.2013.08.043.
  • Li, W., Y. Li, H. Zhang, M. Liu, H. Gong, Y. Yuan, R. Shi, Z. Zhang, C. Liu, C. Chen, et al. 2021b. Hotair promotes gefitinib resistance through modification of EZH2 and silencing p16 and p21 in non-small cell lung cancer. J. Cancer 12 (18):5562–72. doi:10.7150/jca.56093.
  • Likhanov, V. A., O. P. Lopatin, A. S. Yurlov, A. G. Terentiev, and R. V. Andreev. 2021. Analysis of the physical properties, composition and structure of soot particles. J. Phys. Conf. Ser. 2094:052070. doi:10.1088/1742-6596/2094/5/052070.
  • Lin, Y.-H., M. Arashiro, P. W. Clapp, T. Cui, K. G. Sexton, W. Vizuete, A. Gold, I. Jaspers, R. C. Fry, and J. D. Surratt. 2017. Gene expression profiling in human lung cells exposed to isoprene-derived secondary organic aerosol. Environ. Sci. Technol. 51 (14):8166–75. doi:10.1021/acs.est.7b01967.
  • Ling, X.-B., H.-W. Wei, J. Wang, Y.-Q. Kong, Y.-Y. Wu, J.-L. Guo, T.-F. Li, and J.-K. Li. 2016. Mammalian metallothionein-2A and oxidative stress. Int. J. Mol. Sci. 17 (9):1483. doi:10.3390/ijms17091483.
  • Liu, Y., C. Yan, and M. Zheng. 2018. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 618:531–41. doi:10.1016/j.scitotenv.2017.11.053.
  • Luben, T. J., J. L. Nichols, S. J. Dutton, E. Kirrane, E. O. Owens, L. Datko-Williams, M. Madden, and J. D. Sacks. 2017. A systematic review of cardiovascular emergency department visits, hospital admissions and mortality associated with ambient black carbon. Environ. Int. 107:154–62. doi:10.1016/j.envint.2017.07.005.
  • Lucci, F., N. D. Castro, A. A. Rostami, M. J. Oldham, J. Hoeng, Y. B. Pithawalla, and A. K. Kuczaj. 2018. Characterization and modeling of aerosol deposition in vitrocell® exposure systems - exposure well chamber deposition efficiency. J. Aerosol Sci. 123:141–60. doi:10.1016/j.jaerosci.2018.06.015.
  • Manisalidis, I., E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou. 2020. Environmental and health impacts of air pollution: A review. Front. Public Health. 8:14. doi:10.3389/fpubh.2020.00014.
  • Marchetti, S., S. Mollerup, K. B. Gutzkow, C. Rizzi, T. Skuland, M. Refsnes, A. Colombo, J. Øvrevik, P. Mantecca, and J. A. Holme. 2021. Biological effects of combustion-derived particles from different biomass sources on human bronchial epithelial cells. Toxicol. In Vitro 75:105190. doi:10.1016/j.tiv.2021.105190.
  • McCabe, J., and J. P. D. Abbatt. 2009. Heterogeneous loss of gas-phase ozone on n-hexane soot surfaces: Similar kinetics to loss on other chemically unsaturated solid surfaces. J. Phys. Chem. C 113:2120–7. doi:10.1021/jp806771q.
  • Monge, M. E., B. D'Anna, L. Mazri, A. Giroir-Fendler, M. Ammann, D. J. Donaldson, and C. George. 2010. Light changes the atmospheric reactivity of soot. Proc. Natl. Acad. Sci. USA 107 (15):6605–9. doi:10.1073/pnas.0908341107.
  • Moore, R., L. Ziemba, D. Dutcher, A. Beyersdorf, K. Chan, S. Crumeyrolle, T. Raymond, K. Thornhill, E. Winstead, and B. Anderson. 2014. Mapping the operation of the miniature combustion aerosol standard (mini-cast) soot generator. Aerosol Sci. Technol. 48:467–79. doi:10.1080/02786826.2014.890694.
  • Moorthy, B., C. Chu, and D. J. Carlin. 2015. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicol. Sci. 145:5–15.
  • Niranjan, R., K. P. Mishra, S. N. Tripathi, and A. K. Thakur. 2021. Proliferation of lung epithelial cells is regulated by the mechanisms of autophagy upon exposure of soots. Front. Cell Dev. Biol. 9:662597. doi:10.3389/fcell.2021.662597.
  • Niranjan, R., and A. K. Thakur. 2017. The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Front. Immunol. 8:763. doi:10.3389/fimmu.2017.00763.
  • Offer, S., E. Hartner, S. D. Bucchianico, C. Bisig, S. Bauer, J. Pantzke, E. J. Zimmermann, X. Cao, S. Binder, E. Kuhn, et al. 2022. Effect of atmospheric aging on soot particle toxicity in lung cell models at the air–liquid interface: Differential toxicological impacts of biogenic and anthropogenic secondary organic aerosols (SOAs). Environ. Health Perspect. 130 (2):27003. doi:10.1289/EHP9413.
  • Pardo, M., S. Offer, E. Hartner, S. Di Bucchianico, C. Bisig, S. Bauer, J. Pantzke, E. J. Zimmermann, X. Cao, S. Binder, et al. 2022. Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. Environ. Int. 166:107366. doi:10.1016/j.envint.2022.107366.
  • Pardo, M., F. Xu, X. Qiu, T. Zhu, and Y. Rudich. 2018. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver. Sci. Total Environ. 626:147–55. doi:10.1016/j.scitotenv.2018.01.017.
  • Pardo, M., F. Xu, M. Shemesh, X. Qiu, Y. Barak, T. Zhu, and Y. Rudich. 2019. Nrf2 protects against diverse PM2.5 components-induced mitochondrial oxidative damage in lung cells. Sci. Total Environ. 669:303–13. doi:10.1016/j.scitotenv.2019.01.436.
  • Park, J., K.-H. Lee, H. Kim, J. Woo, J. Heo, C.-H. Lee, S.-M. Yi, and C.-G. Yoo. 2021. The impact of organic extracts of seasonal PM2.5 on primary human lung epithelial cells and their chemical characterization. Environ. Sci. Pollut. Res. Int. 28 (42):59868–80. doi:10.1007/s11356-021-14850-1.
  • Paur, H.-R., F. R. Cassee, J. Teeguarden, H. Fissan, S. Diabate, M. Aufderheide, W. G. Kreyling, O. Hänninen, G. Kasper, M. Riediker, et al. 2011. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J. Aerosol Sci. 42:668–92. doi:10.1016/j.jaerosci.2011.06.005.
  • Ramos, C., R. Cañedo-Mondragón, C. Becerril, G. González-Ávila, A. L. Esquivel, A. L. Torres-Machorro, and M. Montaño. 2021. Short-term exposure to wood smoke increases the expression of pro-inflammatory cytokines, gelatinases, and timps in guinea pigs. Toxics 9:227.
  • Riediker, M., D. Zink, W. Kreyling, G. Oberdörster, A. Elder, U. Graham, I. Lynch, A. Duschl, G. Ichihara, S. Ichihara, et al. 2019. Particle toxicology and health - Where are we? Part. Fibre Toxicol. 16:19. doi:10.1186/s12989-019-0302-8.
  • Rouse, R. L., G. Murphy, M. J. Boudreaux, D. B. Paulsen, and A. L. Penn. 2008. Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. Am. J. Respir. Cell Mol. Biol. 39 (2):198–207. doi:10.1165/rcmb.2008-0057OC.
  • Rudich, Y., N. M. Donahue, and T. F. Mentel. 2007. Aging of organic aerosol: Bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 58:321–52. doi:10.1146/annurev.physchem.58.032806.104432.
  • Saleh, S. A. K., H. M. Adly, I. A. Aljahdali, and A. A. Khafagy. 2022. Correlation of occupational exposure to carcinogenic polycyclic aromatic hydrocarbons (cPAHS) and blood levels of p53 and p21 proteins. Biomolecules 12:260.
  • Shaltiel, I. A., L. Krenning, W. Bruinsma, and R. H. Medema. 2015. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J. Cell Sci. 128 (4):607–20. doi:10.1242/jcs.163766.
  • Shiraiwa, M., Y. Sosedova, A. Rouvière, H. Yang, Y. Zhang, J. P. D. Abbatt, M. Ammann, and U. Pöschl. 2011. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nat. Chem. 3 (4):291–5. doi:10.1038/nchem.988.
  • Stading, R., G. Gastelum, C. Chu, W. Jiang, and B. Moorthy. 2021. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin. Cancer Biol. 76:3–16. doi:10.1016/j.semcancer.2021.07.001.
  • Tsai, M.-J., Y.-L. Hsu, T.-N. Wang, L.-Y. Wu, C.-T. Lien, C.-H. Hung, P.-L. Kuo, and M.-S. Huang. 2014. Aryl hydrocarbon receptor (ahr) agonists increase airway epithelial matrix metalloproteinase activity. J. Mol. Med. (Berl) 92 (6):615–28. doi:10.1007/s00109-014-1121-x.
  • Uppstad, H., S. Øvrebø, A. Haugen, and S. Mollerup. 2010. Importance of CYP1A1 and CYP1B1 in bioactivation of benzo[a]pyrene in human lung cell lines. Toxicol. Lett. 192:221–8. doi:10.1016/j.toxlet.2009.10.025.
  • Wang, G., J. Bai, Q. Kong, and A. Emilenko. 2005. Black carbon particles in the urban atmosphere in Beijing. Adv. Atmos. Sci. 22:640–6. doi:10.1007/bf02918707.
  • Wang, Y., F. Liu, C. He, L. Bi, T. Cheng, Z. Wang, H. Zhang, X. Zhang, Z. Shi, and W. Li. 2017. Fractal dimensions and mixing structures of soot particles during atmospheric processing. Environ. Sci. Technol. Lett. 4:487–93. doi:10.1021/acs.estlett.7b00418.
  • Wei, S., Y. Qi, L. Ma, Y. Liu, G. Li, N. Sang, S. Liu, and Y. Liu. 2020. Ageing remarkably alters the toxicity of carbon black particles towards susceptible cells: Determined by differential changes of surface oxygen groups. Environ. Sci. Nano 7:1633–41.
  • Wragg, F. P. H., S. J. Fuller, R. Freshwater, D. C. Green, F. J. Kelly, and M. Kalberer. 2016. An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies. Atmos. Meas. Tech 9:4891–900. doi:10.5194/amt-9-4891-2016.
  • Wu, X., J. Lintelmann, S. Klingbeil, J. Li, H. Wang, E. Kuhn, S. Ritter, and R. Zimmermann. 2017. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: A pilot study. Biomarkers 22 (6):525–36. doi:10.1080/1354750x.2017.1306753.
  • Yang, L., Y. Wang, Z. Lin, X. Zhou, T. Chen, H. He, H. Huang, T. Yang, Y. Jiang, W. Xu, et al. 2015. Mitochondrial OGG1 protects against PM2.5-induced oxidative DNA damage in BEAS-2B cells. Exp. Mol. Pathol. 99 (2):365–73. doi:10.1016/j.yexmp.2015.08.005.
  • Zhang, Z. H., E. Hartner, B. Utinger, B. Gfeller, A. Paul, M. Sklorz, H. Czech, B. X. Yang, X. Y. Su, G. Jakobi, et al. 2022. Are reactive oxygen species (ros) a suitable metric to predict toxicity of carbonaceous aerosol particles? Atmos. Chem. Phys. 22:1793–809. doi:10.5194/acp-22-1793-2022.
  • Zhu, J., Y. Chen, J. Shang, and T. Zhu. 2019. Effects of air/fuel ratio and ozone aging on physicochemical properties and oxidative potential of soot particles. Chemosphere 220:883–91. doi:10.1016/j.chemosphere.2018.12.107.