1,369
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of a barrier on spatial distribution of respiratory particles in a room

ORCID Icon, & ORCID Icon
Pages 384-405 | Received 12 Aug 2022, Accepted 26 Jan 2023, Published online: 06 Mar 2023

References

  • Abuhegazy, M., K. Talaat, O. Anderoglu, and S. V. Poroseva. 2020. Numerical investigation of aerosol transport in a classroom with relevance to COVID-19. Phys. Fluids 32 (10):103311. doi:10.1063/5.0029118.
  • Allen, J., J. Spengler, E. Jones, and J. Cedeno-Laurent. 2020. 5-step guide to checking ventilation rates in classrooms.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2019. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9 (1):2348. doi:10.1038/s41598-019-38808-z.
  • Bagherirad, M., P. Trevan, M. Globan, E. Tay, N. Stephens, and E. Athan. 2014. Transmission of tuberculosis infection in a commercial office. Med. J. Aust. 200 (3):177–179. doi:10.5694/mja12.11750.
  • Baldwin, P., and A. Maynard. 1998. A survey of wind speeds in indoor workplaces. Ann. Occup. Hyg. 42 (5):303–313. doi:10.1016/S0003-4878(98)00031-3.
  • Bartels, J., C. F. Estill, I.-C. Chen, and D. Neu. 2022. Laboratory study of physical barrier efficiency for worker protection against SARS-CoV-2 while standing or sitting. Aerosol Sci. Technol. 56 (3):295–303. doi:10.1080/02786826.2021.2020210.
  • Cadnum, J. L., A. L. Jencson, and C. J. Donskey. 2021. Do plexiglass barriers reduce the risk for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)? Infect. Control Hosp. Epidemiol. doi:10.1017/ice.2021.383.
  • Centers for Disease Control and Prevention. 2021. Scientific brief: SARS-CoV-2 transmission. Accessed July, 2022. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html.
  • Charlotte, N. 2020. High rate of SARS-CoV-2 transmission due to choir practice in France at the beginning of the COVID-19 pandemic. J. Voice. 10.1016/j.jvoice.2020.11.029.
  • Chia, P. Y., K. K. Coleman, Y. K. Tan, S. W. X. Ong, M. Gum, S. K. Lau, X. F. Lim, A. S. Lim, S. Sutjipto, P. H. Lee, et al. 2020. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11 (1):2800. doi:10.1038/s41467-020-16670-2.
  • Ching, W.-H., M. K. H. Leung, D. Y. C. Leung, Y. Li, and P. L. Yuen. 2008. Reducing risk of airborne transmitted infection in hospitals by use of hospital curtains. Indoor Built Environ. 17 (3):252–259. doi:10.1177/1420326X08091957.
  • Cortellessa, G., L. Stabile, F. Arpino, D. E. Faleiros, W. van den Bos, L. Morawska, and G. Buonanno. 2021. Close proximity risk assessment for SARS-CoV-2 infection. Sci. Total Environ. 794:148749. doi:10.1016/j.scitotenv.2021.148749.
  • Dal Porto, R., M. N. Kunz, T. Pistochini, R. L. Corsi, and C. D. Cappa. 2022. Characterizing the performance of a do-it-yourself (DIY) box fan air filter. Aerosol Sci. Technol. 56 (6):564–572. doi:10.1080/02786826.2022.2054674.
  • Doron, S., R. R. Ingalls, A. Beauchamp, J. S. Boehm, H. W. Boucher, L. H. Chow, L. Corridan, K. Goehringer, D. Golenbock, L. Larsen, et al. 2021. Weekly SARS-CoV-2 screening of asymptomatic kindergarten to grade 12 students and staff helps inform strategies for safer in-person learning. Cell Reports Medicine 2 (11):100452. doi:10.1016/j.xcrm.2021.100452.
  • Foster, A., and M. Kinzel. 2021a. Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models. Phys Fluids (1994) 33 (2):021904. doi:10.1063/5.0040755.
  • Foster, A., and M. Kinzel. 2021b. SARS-CoV-2 transmission in classroom settings: Effects of mitigation, age, and Delta variant. Phys Fluids (1994) 33 (11):113311. doi:10.1063/5.0067798.
  • Gettings, J., M. Czarnik, E. Morris, E. Haller, A. M. Thompson-Paul, C. Rasberry, T. M. Lanzieri, J. Smith-Grant, T. M. Aholou, E. Thomas, et al. 2021. Mask use and ventilation improvements to reduce COVID-19 incidence in elementary schools—Georgia, November 16–December 11, 2020. MMWR. Morb. Mortal. Wkly. Rep. 70 (21):779–784. doi:10.15585/mmwr.mm7021e1.
  • Gilkeson, C. A., M. A. Camargo-Valero, L. E. Pickin, and C. J. Noakes. 2013. Measurement of ventilation and airborne infection risk in large naturally ventilated hospital wards. Build. Environ. 65:35–48. doi:10.1016/j.buildenv.2013.03.006.
  • Gupta, J. K., C.-H. Lin, and Q. Chen. 2010. Characterizing exhaled airflow from breathing and talking. Indoor Air. 20 (1):31–39. doi:10.1111/j.1600-0668.2009.00623.x.
  • Katelaris, A. L., J. Wells, P. Clark, S. Norton, R. Rockett, A. Arnott, V. Sintchenko, S. Corbett, and S. K. Bag. 2021. Epidemiologic evidence for airborne transmission of SARS-CoV-2 during church singing, Australia, 2020. Emerg. Infect. Dis. 27 (6):1677–1680. doi:10.3201/eid2706.210465.
  • Lee, J., D. Yoo, S. Ryu, S. Ham, K. Lee, M. Yeo, K. Min, and C. Yoon. 2019. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection. Aerosol Air Qual. Res. 19 (4):840–853. doi:10.4209/aaqr.2018.01.0031.
  • Lessler, J., M. K. Grabowski, K. H. Grantz, E. Badillo-Goicoechea, C. J. E. Metcalf, C. Lupton-Smith, A. S. Azman, and E. A. Stuart. 2021. Household COVID-19 risk and in-person schooling. Science 372 (6546):1092–7. doi:10.1126/science.abh2939.
  • Li, W., A. Chong, B. Lasternas, T. G. Peck, and K. W. Tham. 2022. Quantifying the effectiveness of desk dividers in reducing droplet and airborne virus transmission. Indoor Air 32 (1):e12950. doi:10.1111/ina.12950.
  • Li, X., J. Niu, and N. Gao. 2012. Characteristics of physical blocking on co-occupant’s exposure to respiratory droplet residuals. J. Cent. South Univ. 19 (3):645–650. doi:10.1007/s11771-012-1051-0.
  • Li, Y. 2021. Hypothesis: SARS‐CoV‐2 transmission is predominated by the short‐range airborne route and exacerbated by poor ventilation. Indoor Air. 31 (4):921–925. doi:10.1111/ina.12837.
  • Li, Y., H. Qian, J. Hang, X. Chen, P. Cheng, H. Ling, S. Wang, P. Liang, J. Li, S. Xiao, et al. 2021. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build. Environ. 196:107788. doi:10.1016/j.buildenv.2021.107788.
  • Lindsley, W. G., R. C. Derk, J. P. Coyle, S. B. Martin, K. R. Mead, F. M. Blachere, D. H. Beezhold, J. T. Brooks, T. Boots, and J. D. Noti. 2021. Efficacy of portable air cleaners and masking for reducing indoor exposure to simulated exhaled SARS-CoV-2 aerosols—United States, 2021. MMWR. Morb. Mortal. Wkly. Rep. 70 (27):972–976. doi:10.15585/mmwr.mm7027e1.
  • Lindsley, W. G., T. A. Pearce, J. B. Hudnall, K. A. Davis, S. M. Davis, M. A. Fisher, R. Khakoo, J. E. Palmer, K. E. Clark, I. Celik, et al. 2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J. Occup. Environ. Hyg. 9 (7):443–449. doi:10.1080/15459624.2012.684582.
  • Liu, Y., Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, et al. 2020. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582 (7813):557–560. doi:10.1038/s41586-020-2271-3.
  • Lu, J., J. Gu, K. Li, C. Xu, W. Su, Z. Lai, D. Zhou, C. Yu, B. Xu, and Z. Yang. 2020. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 26 (7):1628–1631. doi:10.3201/eid2607.200764.
  • Marr, L. C., and J. W. Tang. 2021. A paradigm shift to align transmission routes with mechanisms. Clin. Infect. Dis. 73 (10):1747–79. doi:10.1093/cid/ciab722.
  • Matthews, T. G., C. V. Thompson, D. L. Wilson, A. R. Hawthorne, and D. T. Mage. 1989. Air velocities inside domestic environments: An important parameter in the study of indoor air quality and climate. Environ. Int. 15 (1–6):545–550. doi:10.1016/0160-4120(89)90074-3.
  • Morawska, L., G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40 (3):256–269. doi:10.1016/j.jaerosci.2008.11.002.
  • Nazaroff, W. W. 2022. Indoor aerosol science aspects of SARS‐CoV‐2 transmission. Indoor Air 32 (1):e12970. doi:10.1111/ina.12970.
  • Occupational Safety and Health Administration. 2021. Protecting workers: Guidance on mitigating and preventing the spread of COVID-19 in the workplace. Accessed July 1, 2022. https://www.osha.gov/coronavirus/safework.
  • Ren, C., C. Xi, J. Wang, Z. Feng, F. Nasiri, S.-J. Cao, and F. Haghighat. 2021. Mitigating COVID-19 infection disease transmission in indoor environment using physical barriers. Sustain. Cities Soc. 74:103175. doi:10.1016/j.scs.2021.103175.
  • Santarpia, J. L., V. L. Herrera, D. N. Rivera, S. Ratnesar-Shumate, S. Reid, D. N. Ackerman, P. W. Denton, J. W. S. Martens, Y. Fang, N. Conoan, et al. 2022. The size and culturability of patient-generated SARS-CoV-2 aerosol. J. Expo. Sci. Environ. Epidemiol. 32 (5):706–711. doi:10.1038/s41370-021-00376-8.
  • Shen, Y., J. M. Courtney, P. Anfinrud, and A. Bax. 2022. Hybrid measurement of respiratory aerosol reveals a dominant coarse fraction resulting from speech that remains airborne for minutes. Proc. Natl. Acad. Sci. U S A 119 (26):e2203086119. doi:10.1073/pnas.2203086119.
  • Zhang, C., P. V. Nielsen, L. Liu, E. T. Sigmer, S. G. Mikkelsen, and R. L. Jensen. 2022. The source control effect of personal protection equipment and physical barrier on short-range airborne transmission. Build. Environ. 211:108751. doi:10.1016/j.buildenv.2022.108751.