1,540
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluating the accuracy of absorbing aerosol optical properties measured using single particle cavity ring-down spectroscopy

ORCID Icon, ORCID Icon & ORCID Icon
Pages 406-424 | Received 19 Dec 2022, Accepted 22 Feb 2023, Published online: 24 Mar 2023

References

  • Bain, A., and T. C. Preston. 2019. Mie scattering from strongly absorbing airborne particles in a photophoretic trap. J. Appl. Phys. 125 (9):093101. doi:10.1063/1.5082157.
  • Bikkina, S., and M. Sarin. 2019. Brown carbon in the continental outflow to the north indian ocean. Environ. Sci. Process. Impacts 21 (6):970–87. doi:10.1039/C9EM00089E.
  • Bluvshtein, N., U. K. Krieger, and T. Peter. 2020. Photophoretic spectroscopy in atmospheric chemistry – high-sensitivity measurements of light absorption by a single particle. Atmos. Meas. Tech. 13 (6):3191–203. doi:10.5194/amt-13-3191-2020.
  • Bluvshtein, N., P. Lin, J. M. Flores, L. Segev, Y. Mazar, E. Tas, G. Snider, C. Weagle, S. S. Brown, A. Laskin, et al. 2017. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores. J. Geophys. Res. Atmos. 122 (10):5441–56. doi:10.1002/2016JD026230.
  • Bohren, C. F., and D. R. Huffman. 1998. Absorption and scattering of light by small particles. New York: Wiley.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Butler, T. J., D. Mellon, J. Kim, J. Litman, and A. J. Orr-Ewing. 2009. Optical-feedback cavity ring-down spectroscopy measurements of extinction by aerosol particles. J. Phys. Chem. A 113 (16):3963–72. doi:10.1021/jp810310b.
  • Butler, T. J., J. L. Miller, and A. J. Orr-Ewing. 2007. Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction. J. Chem. Phys. 126 (17):174302. doi:10.1063/1.2723735.
  • Cai, C., D. J. Stewart, J. P. Reid, Y-h Zhang, P. Ohm, C. S. Dutcher, and S. L. Clegg. 2015. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers. J. Phys. Chem. A 119 (4):704–18. doi:10.1021/jp510525r.
  • Carter, T. S., C. L. Heald, C. D. Cappa, J. H. Kroll, T. L. Campos, H. Coe, M. I. Cotterell, N. W. Davies, D. K. Farmer, C. Fox, et al. 2021. Investigating carbonaceous aerosol and its absorption properties from fires in the western United States (we-can) and southern Africa (oracles and clarify). JGR. Atmos. 126 (15):e2021JD034984. doi:10.1029/2021JD034984.
  • Cotterell, M., T. Preston, B. Mason, A. Orr-Ewing, and J. Reid. 2015a. Extinction cross section measurements for a single optically trapped particle. In Optical Trapping and Optical Micromanipulation XII. SPIE. doi:10.1117/12.2189174.
  • Cotterell, M. I., J. W. Knight, J. P. Reid, and A. J. Orr-Ewing. 2022. Accurate measurement of the optical properties of single aerosol particles using cavity ring-down spectroscopy. J. Phys. Chem. A 126 (17):2619–31. doi:10.1021/acs.jpca.2c01246.
  • Cotterell, M. I., B. J. Mason, T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2015b. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy. Phys. Chem. Chem. Phys. 17 (24):15843–56. doi:10.1039/C5CP00252D.
  • Cotterell, M. I., T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2016. Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy. Aerosol Sci. Technol. 50 (10):1077–95. doi:10.1080/02786826.2016.1219691.
  • Cotterell, M. I., K. Szpek, J. M. Haywood, and J. M. Langridge. 2020. Sensitivity and accuracy of refractive index retrievals from measured extinction and absorption cross sections for mobility-selected internally mixed light absorbing aerosols. Aerosol Sci. Technol. 54 (9):1034–57. doi:10.1080/02786826.2020.1757034.
  • Cotterell, M. I., R. E. Willoughby, B. R. Bzdek, A. J. Orr-Ewing, and J. P. Reid. 2017. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles. Atmos. Chem. Phys. 17 (16):9837–51. doi:10.5194/acp-17-9837-2017.
  • Feng, Y., V. Ramanathan, and V. R. Kotamarthi. 2013. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 13 (17):8607–21. doi:10.5194/acp-13-8607-2013.
  • Grineva, O. V., V. I. Zhuravlev, and N. V. Lifanova. 1996. Densities and dielectric permittivities of four polyhydric alcohols. J. Chem. Eng. Data 41 (2):155–7. doi:10.1021/je950076o.
  • Huang, H., and K. K. Lehmann. 2009. Noise caused by a finite extinction ratio of the light modulator in cw cavity ring-down spectroscopy. Appl. Phys. B 94 (2):355–66. doi:10.1007/s00340-008-3293-y.
  • Knight, J. W., J. V. Egan, A. J. Orr-Ewing, and M. I. Cotterell. 2022. Direct spectroscopic quantification of the absorption and scattering properties for single aerosol particles. J. Phys. Chem. A 126 (9):1571–7. doi:10.1021/acs.jpca.2c00532.
  • Krieger, U. K., C. Marcolli, and J. P. Reid. 2012. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 41 (19):6631–62. doi:10.1039/C2CS35082C.
  • Lin, G., J. E. Penner, M. G. Flanner, S. Sillman, L. Xu, and C. Zhou. 2014. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of soa and brown carbon. J. Geophys. Res. Atmos. 119 (12):7453–76. doi:10.1002/2013JD021186.
  • Liu, Y., and P. H. Daum. 2008. Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols. J. Aerosol Sci. 39 (11):974–86. doi:10.1016/j.jaerosci.2008.06.006.
  • Lydersen, A. L. 1955. Estimation of critical properties of organic compounds by the method of group contributions. Madison: University of Wisconsin, College of Engineering.
  • Mason, B. J., J. S. Walker, J. P. Reid, and A. J. Orr-Ewing. 2014. Deviations from plane-wave mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity. J. Phys. Chem. A 118 (11):2083–8. doi:10.1021/jp5014863.
  • Mason, B. J., M. I. Cotterell, T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2015. Direct measurements of the optical cross sections and refractive indices of individual volatile and hygroscopic aerosol particles. J. Phys. Chem. A 119 (22):5701–13. doi:10.1021/acs.jpca.5b00435.
  • Mason, B. J., S.-J. King, R. E. H. Miles, K. M. Manfred, A. M. J. Rickards, J. Kim, J. P. Reid, and A. J. Orr-Ewing. 2012. Comparison of the accuracy of aerosol refractive index measurements from single particle and ensemble techniques. J. Phys. Chem. A 116 (33):8547–56. doi:10.1021/jp3049668.
  • Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, et al. 2021. Summary for policymakers. In Climate change 2021: The physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change, ed. K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, 3–32. Cambridge, UK: Cambridge University Press.
  • Mazurenka, M., A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie. 2005. 4 cavity ring-down and cavity enhanced spectroscopy using diode lasers. Annu. Rep. Prog. Chem, Sect. C 101:100–42. doi:10.1039/b408909j.
  • Miles, R. E. H., S. Rudić, A. J. Orr-Ewing, and J. P. Reid. 2011. Sources of error and uncertainty in the use of cavity ring down spectroscopy to measure aerosol optical properties. Aerosol Sci. Technol. 45 (11):1360–75. doi:10.1080/02786826.2011.596170.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 110 (11):844–78. doi:10.1016/j.jqsrt.2009.02.035.
  • Morville, J., D. Romanini, M. Chenevier, and A. Kachanov. 2002. Effects of laser phase noise on the injection of a high-finesse cavity. Appl. Opt. 41 (33):6980–90. doi:10.1364/AO.41.006980.
  • Price, C. L., T. C. Preston, and J. F. Davies. 2022. Hygroscopic growth, phase morphology, and optical properties of model aqueous brown carbon aerosol. Environ. Sci. Technol. 56 (7):3941–51. doi:10.1021/acs.est.1c07356.
  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nature Geosci. 1 (4):221–7. doi:10.1038/ngeo156.
  • Steel, C., and M. J. Henchman. 1998. Understanding the quadrupole mass filter through computer simulation. J. Chem. Educ. 75 (8):1049–54. doi. doi:10.1021/ed075p1049.
  • Valenzuela, A., F. Chu, A. E. Haddrell, M. I. Cotterell, J. S. Walker, A. J. Orr-Ewing, and J. P. Reid. 2021. Optical interrogation of single levitated droplets in a linear quadrupole trap by cavity ring-down spectroscopy. J. Phys. Chem. A 125 (1):394–405. doi:10.1021/acs.jpca.0c09213.
  • Valenzuela, A., J. P. Reid, B. R. Bzdek, and A. J. Orr-Ewing. 2018. Accuracy required in measurements of refractive index and hygroscopic response to reduce uncertainties in estimates of aerosol radiative forcing efficiency. J. Geophys. Res. Atmos. 123 (12):6469–86. doi:10.1029/2018JD028365.
  • Walker, J. S., A. E. Carruthers, A. J. Orr-Ewing, and J. P. Reid. 2013. Measurements of light extinction by single aerosol particles. J. Phys. Chem. Lett. 4 (10):1748–52. doi:10.1021/jz4008068.
  • Wu, H., J. W. Taylor, J. M. Langridge, C. Yu, J. D. Allan, K. Szpek, M. I. Cotterell, P. I. Williams, M. Flynn, P. Barker, et al. 2021. Rapid transformation of ambient absorbing aerosols from west african biomass burning. Atmos. Chem. Phys. 21 (12):9417–40. doi:10.5194/acp-21-9417-2021.
  • Yan, X., R. M. Bain, and R. G. Cooks. 2016. Organic reactions in microdroplets: Reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. Engl. 55 (42):12960–72. doi:10.1002/anie.201602270.
  • Zarzana, K. J., C. D. Cappa, and M. A. Tolbert. 2014. Sensitivity of aerosol refractive index retrievals using optical spectroscopy. Aerosol Sci. Technol. 48 (11):1133–44. doi:10.1080/02786826.2014.963498.