218
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Impactor collection efficiencies can modify the uncertainty of multiply charged particles in optical extinction measurements

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 562-576 | Received 19 Dec 2022, Accepted 06 Mar 2023, Published online: 10 Apr 2023

References

  • Atkinson, D. B. 2003. Solving chemical problems of environmental importance using cavity ring-down spectroscopy. Analyst. 128 (2):117–25. doi:10.1039/B206699H.
  • Bluvshtein, N., J. M. Flores, A. A. Riziq, and Y. Rudich. 2012. An approach for faster retrieval of aerosols’ complex refractive index using cavity ring-down spectroscopy. Aerosol Sci. Technol. 46 (10):1140–50. doi:10.1080/02786826.2012.700141.
  • Buys, T. S., and K. De Clerk. 1972. Bi-Gaussian fitting of skewed peaks. Anal. Chem. 44 (7):1273–5. doi:10.1021/ac60315a005.
  • Cotterell, M. I., K. Szpek, J. M. Haywood, and J. M. Langridge. 2020. Sensitivity and accuracy of refractive index retrievals from measured extinction and absorption cross sections for mobility-selected internally mixed light absorbing aerosols. Aerosol Sci. Technol. 54 (9):1034–57. doi:10.1080/02786826.2020.1757034.
  • Ehara, K., C. Hagwood, and K. J. Coakley. 1996. Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyser. J. Aerosol Sci. 27 (2):217–34. doi:10.1016/0021-8502(95)00562-5.
  • Everest, M. A., and D. B. Atkinson. 2008. Discrete sums for the rapid determination of exponential decay constants. Rev. Sci. Instrum. 79 (2):023108–9. doi:10.1063/1.2839918.
  • Freedman, M. A., C. A. Hasenkopf, M. R. Beaver, and M. A. Tolbert. 2009. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate. J. Phys. Chem. A. 113 (48):13584–92. doi:10.1021/jp906240y.
  • Halmer, D., G. von Basum, P. Hering, and M. Mürtz. 2004. Fast exponential fitting algorithm for real-time instrumental use. Rev. Sci. Instrum. 75 (6):2187–91. doi:10.1063/1.1711189.
  • Hasenkopf, C. A., M. R. Beaver, M. G. Trainer, H. Langley Dewitt, M. A. Freedman, O. B. Toon, C. P. McKay, and M. A. Tolbert. 2010. Optical properties of titan and early earth haze laboratory analogs in the mid-visible. Icarus. 207 (2):903–13. doi:10.1016/j.icarus.2009.12.015.
  • Jaenicke, R., and I. H. Blifford. 1974. The influence of aerosol characteristics on the calibration of impactors. J. Aerosol Sci. 5 (5):457–64. doi:10.1016/0021-8502(74)90085-8.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–51. doi:10.1016/0021-8502(75)90060-9.
  • Kulkarni, P., P. A. Baron, and K. Willeke, eds. 2011. Aerosol measurement: Principles, techniques and applications. Hoboken, NJ: John Wiley & Sons, Inc.
  • Kuwata, M. 2015. Particle classification by the tandem differential mobility analyzer–particle mass analyzer system. Aerosol Sci. Technol. 49 (7):508–20. doi:10.1080/02786826.2015.1045058.
  • Mamakos, A. 2016. Methodology to quantify the ratio of multiple-to single-charged fractions acquired in aerosol neutralizers. Aerosol Sci. Technol. 50 (4):363–72. doi:10.1080/02786826.2016.1153034.
  • Marple, V. A., and B. Y. H. Liu. 1974. Characteristics of laminar jet impactors. Environ. Sci. Technol. 8 (7):648–54. doi:10.1021/es60092a003.
  • Marple, V. A., and B. Y. H. Liu. 1975. On fluid flow and aerosol impaction in inertial impactors. J. Colloid Interface Sci. 53 (1):31–4. doi:10.1016/0021-9797(75)90031-4.
  • Miles, R. E. H., S. Rudić, A. J. Orr-Ewing, and J. P. Reid. 2011. Sources of error and uncertainty in the use of cavity ring down spectroscopy to measure aerosol optical properties. Aerosol Sci. Technol. 45 (11):1360–75. doi:10.1080/02786826.2011.596170.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transfer. 110 (11):844–78. doi:10.1016/j.jqsrt.2009.02.035.
  • Olfert, J. S., and N. Collings. 2005. New method for particle mass classification—the Couette centrifugal particle mass analyzer. J. Aerosol Sci. 36 (11):1338–52. doi:10.1016/j.jaerosci.2005.03.006.
  • Pak, S. S., B. Y. H. Liu, and K. L. Rubow. 1992. Effect of coating thickness on particle bounce in inertial impactors. Aerosol Sci. Technol. 16 (3):141–50. doi:10.1080/02786829208959544.
  • Rader, D. J., and V. A. Marple. 1985. Effect of ultra-Stokesian drag and particle interception on impaction characteristics. Aerosol Sci. Technol. 4 (2):141–56. doi:10.1080/02786828508959044.
  • Radney, J. G., M. H. Bazargan, M. E. Wright, and D. B. Atkinson. 2009. Laboratory validation of aerosol extinction coefficient measurements by a field-deployable pulsed cavity ring-down transmissometer. Aerosol Sci. Technol. 43 (1):71–80. doi:10.1080/02786820802482536.
  • Radney, J. G., X. Ma, K. A. Gillis, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister. 2013. Direct measurements of mass-specific optical cross sections of single component aerosol mixtures. Anal. Chem. 85 (17):8319–25. doi:10.1021/ac401645y.
  • Radney, J. G., and C. D. Zangmeister. 2016. Practical limitations of aerosol separation by a tandem differential mobility analyzer–aerosol particle mass analyzer. Aerosol Sci. Technol. 50 (2):160–72. doi:10.1080/02786826.2015.1136733.
  • Radney, J. G., and C. D. Zangmeister. 2018. Comparing aerosol refractive indices retrieved from full distribution and size- and mass-selected measurements. J. Quant. Spectrosc. Radiat. Transfer. 220:52–66. doi:10.1016/j.jqsrt.2018.08.021.
  • Sumlin, B. J., W. R. Heinson, and R. K. Chakrabarty. 2018. Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities. J. Quant. Spectrosc. Radiat. Transfer. 205:127–34. doi:10.1016/j.jqsrt.2017.10.012.
  • Tajima, N., H. Sakurai, N. Fukushima, and K. Ehara. 2013. Design considerations and performance evaluation of a compact aerosol particle mass analyzer. Aerosol Sci. Technol. 47 (10):1152–62. doi:10.1080/02786826.2013.827323.
  • Tavakoli, F., and J. S. Olfert. 2013. An instrument for the classification of aerosols by particle relaxation time: Theoretical models of the aerodynamic aerosol classifier. Aerosol Sci. Technol. 47 (8):916–26. doi:10.1080/02786826.2013.802761.
  • Tigges, L., A. Jain, and H. J. Schmid. 2015. On the bipolar charge distribution used for mobility particle sizing: Theoretical considerations. J. Aerosol Sci. 88:119–34. doi:10.1016/j.jaerosci.2015.05.010.
  • Tigges, L., A. Wiedensohler, K. Weinhold, J. Gandhi, and H. J. Schmid. 2015. Bipolar charge distribution of a soft X-ray diffusion charger. J. Aerosol Sci. 90:77–86. doi:10.1016/j.jaerosci.2015.07.002.
  • Turner, J. R., and S. V. Hering. 1987. Greased and oiled substrates as bounce-free impaction surfaces. J. Aerosol Sci. 18 (2):215–24. doi:10.1016/0021-8502(87)90057-7.
  • Veghte, D. P., M. B. Altaf, J. D. Haines, and M. A. Freedman. 2016. Optical properties of non-absorbing mineral dust components and mixtures. Aerosol Sci. Technol. 50 (11):1239–52. doi:10.1080/02786826.2016.1225153.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19 (3):387–9. doi:10.1016/0021-8502(88)90278-9.
  • Wiedensohler, A., and H. J. Fissan. 1988. Aerosol charging in high purity gases. J. Aerosol Sci. 19 (7):867–70. doi:10.1016/0021-8502(88)90054-7.
  • Wiedensohler, A., and H. J. Fissan. 1991. Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen. Aerosol Sci. Technol. 14 (3):358–64. doi:10.1080/02786829108959498.
  • Yao, Q., A. Asa-Awuku, C. D. Zangmeister, and J. G. Radney. 2020. Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape. Aerosol Sci. Technol. 54 (10):1197–209. doi:10.1080/02786826.2020.1763248.
  • Zangmeister, C. D., and J. G. Radney. 2018. NIST interlaboratory study of aerosol absorption measurements using photoacoustic spectroscopy in Technical Note 1989. Gaithersburg, MD: National Institute of Standards and Technology. doi:10.6028/NIST.TN.1989.
  • Zelenyuk, A., Y. Cai, and D. Imre. 2006. From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci. Technol. 40 (3):197–217. doi:10.1080/02786820500529406.
  • Zhang, X., J. Qiu, X. Li, J. Zhao, and L. Liu. 2020. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 59 (8):2337–44. doi:10.1364/AO.383831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.