1,675
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The hygroscopic properties of biomass burning aerosol from Eucalyptus and cow dung under different combustion conditions

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 665-677 | Received 03 Jan 2023, Accepted 27 Mar 2023, Published online: 24 Apr 2023

References

  • Andreae, M. O. 2019. Emission of trace gases and aerosols from biomass burning – An updated assessment. Atmos. Chem. Phys. 19 (13):8523–46. doi:10.5194/acp-19-8523-2019.
  • Barker, P. A., G. Allen, M. Gallagher, J. R. Pitt, R. E. Fisher, T. Bannan, E. G. Nisbet, S. J. B. Bauguitte, D. Pasternak, S. Cliff, et al. 2020. Airborne measurements of fire emission factors for African biomass burning sampled during the MOYA campaign. Atmos. Chem. Phys. 20 (23):15443–59. doi:10.5194/acp-20-15443-2020.
  • Beaver, M. R., R. M. Garland, C. A. Hasenkopf, T. Baynard, A. R. Ravishankara, and M. A. Tolbert. 2008. A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion. Environ. Res. Lett. 3 (4):045003. doi:10.1088/1748-9326/3/4/045003.
  • Beyene, A. D., and S. F. Koch. 2013. Clean fuel-saving technology adoption in urban Ethiopia. Energy Econ. 36:605–13. doi:10.1016/j.eneco.2012.11.003.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Bougiatioti, A., S. Bezantakos, I. Stavroulas, N. Kalivitis, P. Kokkalis, G. Biskos, N. Mihalopoulos, A. Papayannis, and A. Nenes. 2016. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean. Atmos. Chem. Phys. 16 (11):7389–409. doi:10.5194/acp-16-7389-2016.
  • Brock, C. A., N. L. Wagner, B. E. Anderson, A. R. Attwood, A. Beyersdorf, P. Campuzano-Jost, A. G. Carlton, D. A. Day, G. S. Diskin, T. D. Gordon, et al. 2016. Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth. Atmos. Chem. Phys. 16 (8):4987–5007. doi:10.5194/acp-16-4987-2016.
  • Carrico, C. M., M. D. Petters, S. M. Kreidenweis, J. L. Collett, Jr., G. Engling, and W. C. Malm. 2008. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. J. Geophys. Res. 113 (D8):1–9. doi:10.1029/2007JD009274.
  • Cecchini, M. A., L. A. T. Machado, M. O. Andreae, S. T. Martin, R. I. Albrecht, P. Artaxo, H. M. J. Barbosa, S. Borrmann, D. Fütterer, T. Jurkat, et al. 2017. Sensitivities of Amazonian clouds to aerosols and updraft speed. Atmos. Chem. Phys. 17 (16):10037–50. doi:10.5194/acp-17-10037-2017.
  • Cerully, K. M., T. Raatikainen, S. Lance, D. Tkacik, P. Tiitta, T. Petäjä, M. Ehn, M. Kulmala, D. R. Worsnop, A. Laaksonen, et al. 2011. Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmos. Chem. Phys. 11 (23):12369–86. doi:10.5194/acp-11-12369-2011.
  • Chang, R. Y. W., J. G. Slowik, N. C. Shantz, A. Vlasenko, J. Liggio, S. J. Sjostedt, W. R. Leaitch, and J. P. D. Abbatt. 2010. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: Relationship to degree of aerosol oxidation. Atmos. Chem. Phys. 10 (11):5047–64. doi:10.5194/acp-10-5047-2010.
  • Chen, L. W. A., P. Verburg, A. Shackelford, D. Zhu, R. Susfalk, J. C. Chow, and J. G. Watson. 2010. Moisture effects on carbon and nitrogen emission from burning of wildland biomass. Atmos. Chem. Phys. 10 (14):6617–25. doi:10.5194/acp-10-6617-2010.
  • Cheng, Y. F., A. Wiedensohler, H. Eichler, J. Heintzenberg, M. Tesche, A. Ansmann, M. Wendisch, H. Su, D. Althausen, H. Herrmann, et al. 2008. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. Atmos. Environ. 42 (25):6373–97. doi:10.1016/j.atmosenv.2008.04.009.
  • Clarke, A. D., Y. Shinozuka, V. N. Kapustin, S. Howell, B. Huebert, S. Doherty, T. Anderson, D. Covert, J. Anderson, X. Hua, et al. 2004. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res. 109 (D15):1–20. doi:10.1029/2003JD004378.
  • Dawson, J. N., K. A. Malek, P. N. Razafindrambinina, T. M. Raymond, D. D. Dutcher, A. A. Asa-Awuku, and M. A. Freedman. 2020. Direct comparison of the submicron aerosol hygroscopicity of water-soluble sugars. ACS Earth Space Chem. 4 (12):2215–26. doi:10.1021/acsearthspacechem.0c00159.
  • Dawson, K. W., M. D. Petters, N. Meskhidze, S. Suda Petters, and S. M. Kreidenweis. 2016. Hygroscopic growth and cloud droplet activation of xanthan gum as a proxy for marine hydrogels. JGR Atmos. 121 (19):803–11. doi:10.1002/2016JD025143.
  • Dusek, U., G. P. Frank, A. Massling, K. Zeromskiene, Y. Iinuma, O. Schmid, G. Helas, T. Hennig, A. Wiedensohler, and M. O. Andreae. 2011. Water uptake by biomass burning aerosol at sub- and supersaturated conditions: Closure studies and implications for the role of organics. Atmos. Chem. Phys. 11 (18):9519–32. doi:10.5194/acp-11-9519-2011.
  • Eck, T. F., B. N. Holben, D. E. Ward, M. M. Mukelabai, O. Dubovik, A. Smirnov, J. S. Schafer, N. C. Hsu, S. J. Piketh, A. Queface, et al. 2003. Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J. Geophys. Res. 108 (D13):1–21. doi:10.1029/2002JD002321.
  • Eichler, H., Y. F. Cheng, W. Birmili, A. Nowak, A. Wiedensohler, E. Brüggemann, T. Gnauk, H. Herrmann, D. Althausen, A. Ansmann, et al. 2008. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China. Atmos. Environ. 42 (25):6321–34. doi:10.1016/j.atmosenv.2008.05.007.
  • Engelhart, G. J., C. J. Hennigan, M. A. Miracolo, A. L. Robinson, and S. N. Pandis. 2012. Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmos. Chem. Phys. 12 (15):7285–93. doi:10.5194/acp-12-7285-2012.
  • Farmer, D. K., C. D. Cappa, and S. M. Kreidenweis. 2015. Atmospheric processes and their controlling influence on cloud condensation nuclei activity. Chem. Rev. 115 (10):4199–217. doi:10.1021/cr5006292.
  • Fierz-Schmidhauser, R., P. Zieger, M. Gysel, L. Kammermann, P. F. DeCarlo, U. Baltensperger, and E. Weingartner. 2010. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. Atmos. Chem. Phys. 10 (5):2319–33. doi:10.5194/acp-10-2319-2010.
  • Flamant, C., P. Knippertz, A. H. Fink, A. Akpo, B. Brooks, C. J. Chiu, H. Coe, S. Danuor, M. Evans, O. Jegede, et al. 2018. The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa field campaign: Overview and research highlights. Bulletin of the American Meteorological Society 99 (1):83–104. doi:10.1175/BAMS-D-16-0256.1.
  • Giordano, M. R., D. Z. Short, S. Hosseini, W. Lichtenberg, and A. A. Asa-Awuku. 2013. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol. Environ. Sci. Technol. 47 (19):10980–6. doi:10.1021/es401867j.
  • Gohil, K., C. N. Mao, D. Rastogi, C. Peng, M. Tang, and A. Asa-Awuku. 2022. Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth. Atmos. Chem. Phys. 22 (19):12769–87. doi:10.5194/acp-22-12769-2022.
  • Gomez, S. L., C. M. Carrico, C. Allen, J. Lam, S. Dabli, A. P. Sullivan, A. C. Aiken, T. Rahn, D. Romonosky, P. Chylek, et al. 2018. Southwestern U.S. biomass burning smoke hygroscopicity: The role of plant phenology, chemical composition, and combustion properties. J. Geophys. Res. Atmos. 123 (10):5416–32. doi:10.1029/2017JD028162.
  • Haarig, M., A. Ansmann, J. Gasteiger, K. Kandler, D. Althausen, H. Baars, M. Radenz, and D. A. Farrell. 2017. Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE. Atmos. Chem. Phys. 17 (23):14199–217. doi:10.5194/acp-17-14199-2017.
  • Hamilton, D. S., S. Hantson, C. E. Scott, J. O. Kaplan, K. J. Pringle, L. P. Nieradzik, A. Rap, G. A. Folberth, D. V. Spracklen, and K. S. Carslaw. 2018. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun. 9 (1):3182. doi:10.1038/s41467-018-05592-9.
  • Hand, J. L., and W. C. Malm. 2007. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res. 112 (D16):1–24. doi:10.1029/2007JD008484.
  • Hansen, A. M. K., J. Hong, T. Raatikainen, K. Kristensen, A. Ylisirniö, A. Virtanen, T. Petäjä, M. Glasius, and N. L. Prisle. 2015. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate. Atmos. Chem. Phys. 15 (24):14071–89. doi:10.5194/acp-15-14071-2015.
  • Haywood, J. M., S. J. Abel, P. A. Barrett, N. Bellouin, A. Blyth, K. N. Bower, M. Brooks, K. Carslaw, H. Che, H. Coe, et al. 2021. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmos. Chem. Phys. 21 (2):1049–84. doi:10.5194/acp-21-1049-2021.
  • IEA, IRENA, UNSD, World Bank, WHO. 2020. Tracking SDG 7: The energy progress report. Washington, DC: World Bank.
  • Kacarab, M., K. L. Thornhill, A. Dobracki, S. G. Howell, J. R. O’Brien, S. Freitag, M. R. Poellot, R. Wood, P. Zuidema, J. Redemann, et al. 2020. Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region. Atmos. Chem. Phys. 20 (5):3029–40. doi:10.5194/acp-20-3029-2020.
  • Kim, J., L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, et al. 2016. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmos. Chem. Phys. 16 (1):293–304. doi:10.5194/acp-16-293-2016.
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 15 (3):259–63. doi:10.1127/0941-2948/2006/0130.
  • Kreidenweis, S. M., and A. Asa-Awuku. 2014. 5.13 - Aerosol hygroscopicity: Particle water content and its role in atmospheric processes. In Treatise on geochemistry, ed. Heinrich D. Holland and Karl K. Turekian, 2nd ed., 331–61. Oxford: Elsevier.
  • Kreidenweis, S. M., K. Koehler, P. J. DeMott, A. J. Prenni, C. Carrico, and B. Ervens. 2005. Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts. Atmos. Chem. Phys. 5 (5):1357–1370. doi:10.5194/acp-5-1357-2005.
  • Lamarque, J. F., T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, et al. 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 10 (15):7017–39. doi:10.5194/acp-10-7017-2010.
  • Laris, P., M. Koné, F. Dembélé, C. M. Rodrigue, L. Yang, R. Jacobs, and Q. Laris. 2021. Methane gas emissions from savanna fires: What analysis of local burning regimes in a working West African landscape tell us. Biogeosciences 18 (23):6229–44. doi:10.5194/bg-18-6229-2021.
  • Lee, W., Y. Deng, R. Zhou, M. Itoh, M. Mochida, and M. Kuwata. 2022. Water solubility distribution of organic matter accounts for the discrepancy in hygroscopicity among sub- and supersaturated humidity regimes. Environ. Sci. Technol. 56 (24):17924–35. doi:10.1021/acs.est.2c04647.
  • Lewis, K. A., W. P. Arnott, H. Moosmüller, R. K. Chakrabarty, C. M. Carrico, S. M. Kreidenweis, D. E. Day, W. C. Malm, A. Laskin, J. L. Jimenez, et al. 2009. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmos. Chem. Phys. 9 (22):8949–66. doi:10.5194/acp-9-8949-2009.
  • Li, C., Y. Hu, J. Chen, Z. Ma, X. Ye, X. Yang, L. Wang, X. Wang, and A. Mellouki. 2016. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. Atmos. Environ. 140:94–105. doi:10.1016/j.atmosenv.2016.05.052.
  • Li, C. L., Z. Ma, J. M. Chen, X. M. Wang, X. N. Ye, L. Wang, X. Yang, H. D. Kan, D. J. Donaldson, and A. Mellouki. 2015. Evolution of biomass burning smoke particles in the dark. Atmos. Environ. 120:244–52. doi:10.1016/j.atmosenv.2015.09.003.
  • Liu, D., J. Allan, J. Whitehead, D. Young, M. Flynn, H. Coe, G. McFiggans, Z. L. Fleming, and B. Bandy. 2013. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos. Chem. Phys. 13 (4):2015–29. doi:10.5194/acp-13-2015-2013.
  • Malek, K. A., K. Gohil, H. A. Al-Abadleh, and A. A. Asa-Awuku. 2022. Hygroscopicity of polycatechol and polyguaiacol secondary organic aerosol in sub- and supersaturated water vapor environments. Environ. Sci.: Atmos. 2 (1):24–33. doi:10.1039/D1EA00063B.
  • Martin, M., T. Tritscher, Z. Jurányi, M. F. Heringa, B. Sierau, E. Weingartner, R. Chirico, M. Gysel, A. S. H. Prévôt, U. Baltensperger, et al. 2013. Hygroscopic properties of fresh and aged wood burning particles. J. Aerosol Sci. 56:15–29. doi:10.1016/j.jaerosci.2012.08.006.
  • Massoli, P., A. T. Lambe, A. T. Ahern, L. R. Williams, M. Ehn, J. Mikkilä, M. R. Canagaratna, W. H. Brune, T. B. Onasch, J. T. Jayne, et al. 2010. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophys. Res. Lett. 37 (24):n/a–/a. doi:10.1029/2010GL045258.
  • McFiggans, G., P. Artaxo, U. Baltensperger, H. Coe, M. C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, et al. 2006. The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 6 (9):2593–2649.10.5194/acp-6-2593-2006.
  • Moore, R. H., A. Nenes, and J. Medina. 2010. Scanning mobility CCN analysis—A method for fast measurements of size-resolved CCN distributions and activation kinetics. Aerosol Sci. Technol. 44 (10):861–71. doi:10.1080/02786826.2010.498715.
  • Moosmüller, H., R. Varma, and W. P. Arnott. 2005. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction. Aerosol Sci. Technol. 39 (1):30–9. doi:10.1080/027868290903880.
  • Ng, D. H. L., R. M. Li, S. V. Raghavan, and S. Y. Liong. 2017. Investigating the relationship between Aerosol Optical Depth and Precipitation over Southeast Asia with Relative Humidity as an influencing factor. Sci. Rep. 7 (1):1–13. doi:10.1038/s41598-017-10858-1.
  • Pajunoja, A., A. T. Lambe, J. Hakala, N. Rastak, M. J. Cummings, J. F. Brogan, L. Hao, M. Paramonov, J. Hong, N. L. Prisle, et al. 2015. Adsorptive uptake of water by semisolid secondary organic aerosols. Geophys. Res. Lett. 42 (8):3063–8. doi:10.1002/2015GL063142.
  • Patel, P. N., and J. H. Jiang. 2021. Cloud condensation nuclei characteristics at the Southern Great Plains site: Role of particle size distribution and aerosol hygroscopicity. Environ. Res. Commun. 3 (7):075002. doi:10.1088/2515-7620/ac0e0b.
  • Petters, M. D., C. M. Carrico, S. M. Kreidenweis, A. J. Prenni, P. J. DeMott, J. L. Collett, and H. Moosmüller. 2009. Cloud condensation nucleation activity of biomass burning aerosol. J. Geophys. Res. 114 (D22):1–16. doi:10.1029/2009JD012353.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi:10.5194/acp-7-1961-2007.
  • Pokhrel, R. P., J. Gordon, M. N. Fiddler, and S. Bililign. 2020. Impact of combustion conditions on physical and morphological properties of biomass burning aerosol. Aerosol Sci. Technol. 55 (1):80–91. doi:10.1080/02786826.2020.1822512.
  • Pokhrel, R. P., J. Gordon, M. N. Fiddler, and S. Bililign. 2021. Determination of emission factors of pollutants from biomass burning of African fuels in laboratory measurements. JGR Atmos. 126 (20):e2021JD034731. doi:10.1029/2021JD034731.
  • Pokhrel, R. P., N. L. Wagner, J. M. Langridge, D. A. Lack, T. Jayarathne, E. A. Stone, C. E. Stockwell, R. J. Yokelson, and S. M. Murphy. 2016. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmos. Chem. Phys. 16 (15):9549–61. doi:10.5194/acp-16-9549-2016.
  • Pringle, K. J., H. Tost, A. Pozzer, U. Pöschl, and J. Lelieveld. 2010. Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmos. Chem. Phys. 10 (12):5241–55. doi:10.5194/acp-10-5241-2010.
  • Redemann, J., R. Wood, P. Zuidema, S. J. Doherty, B. Luna, S. E. LeBlanc, M. S. Diamond, Y. Shinozuka, I. Y. Chang, R. Ueyama, et al. 2021. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: Aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 21 (3):1507–63. doi:10.5194/acp-21-1507-2021.
  • Reutter, P., H. Su, J. Trentmann, M. Simmel, D. Rose, S. S. Gunthe, H. Wernli, M. O. Andreae, and U. Pöschl. 2009. Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys. 9 (18):7067–80. doi:10.5194/acp-9-7067-2009.
  • Rissler, J., A. Vestin, E. Swietlicki, G. Fisch, J. Zhou, P. Artaxo, and M. O. Andreae. 2006. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys. 6 (2):471–91. doi:10.5194/acp-6-471-2006.
  • Roberts, G. C., and A. Nenes. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 39 (3):206–21. doi:10.1080/027868290913988.
  • Rose, D., S. S. Gunthe, H. Su, R. M. Garland, H. Yang, M. Berghof, Y. F. Cheng, B. Wehner, P. Achtert, A. Nowak, et al. 2011. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmos. Chem. Phys. 11 (6):2817–36. doi:10.5194/acp-11-2817-2011.
  • Royer, H. M., M. L. Pöhlker, O. Krüger, E. Blades, P. Sealy, N. N. Lata, Z. Cheng, S. China, A. P. Ault, P. K. Quinn, et al. 2022. African smoke particles act as cloud condensation nuclei in the wintertime tropical North Atlantic boundary layer over Barbados. Atmos. Chem. Phys. Discuss. 2022:1–39. doi:10.5194/acp-2022-341.
  • Sato, Y., and K. Suzuki. 2019. How do aerosols affect cloudiness? Science 363 (6427):580–1. doi:10.1126/science.aaw3720.
  • Singh, S., M. N. Fiddler, and S. Bililign. 2016. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry. Atmos. Chem. Phys. 16 (21):13491–507. doi:10.5194/acp-16-13491-2016.
  • Singh, S., M. N. Fiddler, D. Smith, and S. Bililign. 2014. Error analysis and uncertainty in the determination of aerosol optical properties using cavity ring-down spectroscopy, integrating nephelometry, and the extinction-minus-scattering method. Aerosol Sci. Technol. 48 (12):1345–59. doi:10.1080/02786826.2014.984062.
  • Smith, D. M., M. N. Fiddler, R. P. Pokhrel, and S. Bililign. 2020. Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – Part 1: Optical properties. Atmos. Chem. Phys. 20 (17):10149–68. doi:10.5194/acp-20-10149-2020.
  • Smith, D. M., M. N. Fiddler, K. G. Sexton, and S. Bililign. 2019. Construction and characterization of an indoor smog chamber for measuring the optical and physicochemical properties of aging biomass burning aerosols. Aerosol Air Qual. Res. 19 (3):467–83. doi:10.4209/aaqr.2018.06.0243.
  • Spracklen, D. V., K. S. Carslaw, M. Kulmala, V. Kerminen, S. Sihto, I. Riipinen, J. Merikanto, G. W. Mann, M. P. Chipperfield, A. Wiedensohler, et al. 2008. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett. 35 (6):1–5. doi:10.1029/2007GL033038.
  • Strawa, A. W., R. Elleman, A. G. Hallar, D. Covert, K. Ricci, R. Provencal, T. W. Owano, H. H. Jonsson, B. Schmid, A. P. Luu, et al. 2006. Comparison of in situ aerosol extinction and scattering coefficient measurements made during the Aerosol Intensive Operating Period. J. Geophys. Res. 111 (D5):1–17. doi:10.1029/2005JD006056.
  • Streets, D. G., T. C. Bond, T. Lee, and C. Jang. 2004. On the future of carbonaceous aerosol emissions. J. Geophys. Res. 109 (D24):1–15. doi:10.1029/2004JD004902.
  • Swietlicki, E., H. C. Hansson, K. Hämeri, B. Svenningsson, A. Massling, G. McFiggans, P. H. McMurry, T. Petäjä, P. Tunved, M. Gysel, et al. 2008. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review. Tellus B: Chemical and Physical Meteorology 60 (3):432–69. doi:10.1111/j.1600-0889.2008.00350.x.
  • Tang, M., C. K. Chan, Y. Jie Li, H. Su, Q. Ma, Z. Wu, G. Zhang, Z. Wang, M. Ge, M. Hu, et al. 2019. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. 19 (19):12631–86. doi:10.5194/acp-19-12631-2019.
  • Thompson, J. E., N. Barta, D. Policarpio, and R. DuVall. 2008. A fixed frequency aerosol albedometer. Opt. Express. 16 (3):2191–205. doi:10.1364/Oe.16.002191.
  • Thompson, J. E., B. W. Smith, and J. D. Winefordner. 2002. Monitoring atmospheric particulate matter through cavity ring-down spectroscopy. Anal. Chem. 74 (9):1962–7. doi:10.1021/ac0110505.
  • Thornhill, G. D., C. L. Ryder, E. J. Highwood, L. C. Shaffrey, and B. T. Johnson. 2018. The effect of South American biomass burning aerosol emissions on the regional climate. Atmos. Chem. Phys. 18 (8):5321–42. doi:10.5194/acp-18-5321-2018.
  • Titos, G., A. Cazorla, P. Zieger, E. Andrews, H. Lyamani, M. J. Granados-Muñoz, F. J. Olmo, and L. Alados-Arboledas. 2016. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmos. Environ. 141:494–507. doi:10.1016/j.atmosenv.2016.07.021.
  • UN, Department of Economic and Social Affairs, Population Division. 2017. World population prospects: The 2017 revision, key findings and advance tables. Working Paper No. ESA/P/WP/248, United Nations, New York.
  • Vakkari, V., V.-M. Kerminen, J. P. Beukes, P. Tiitta, P. G. Zyl, M. Josipovic, A. D. Venter, K. Jaars, D. R. Worsnop, M. Kulmala, et al. 2014. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 41 (7):2644–51. doi:10.1002/2014GL059396.
  • van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10 (23):11707–35. doi:10.5194/acp-10-11707-2010.
  • Wang, Z., Y. Cheng, N. Ma, E. Mikhailov, U. Pöschl, and H. Su. 2017. Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: Implications for laboratory experiments, field measurements and model studies. Atmospheric Chemistry and Physics Discussions: 1–33. doi:10.5194/acp-2017-253.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19 (3):387–9. doi:10.1016/0021-8502(88)90278-9.
  • WMO. 2016. WMO/GAW aerosol measurement procedures, guidelines and recommendations. GAW Report No. 227.
  • Wu, Z. J., L. Poulain, S. Henning, K. Dieckmann, W. Birmili, M. Merkel, D. van Pinxteren, G. Spindler, K. Müller, F. Stratmann, et al. 2013. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmos. Chem. Phys. 13 (16):7983–96. doi:10.5194/acp-13-7983-2013.
  • Zieger, P., R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger. 2013. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 13 (21):10609–31. doi:10.5194/acp-13-10609-2013.