670
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A multilayer heat and mass transfer model for photoacoustics of aerosol particles (MHM-PA)

, , &
Pages 742-757 | Received 25 Nov 2022, Accepted 14 Apr 2023, Published online: 01 Jun 2023

References

  • Ajtai, T., Á. Filep, M. Schnaiter, C. Linke, M. Vragel, Z. Bozóki, G. Szabó, and T. Leisner. 2010. A novel multi-wavelength photoacoustic spectrometer for the measurement of the UV–vis-NIR spectral absorption coefficient of atmospheric aerosols. J. Aerosol Sci. 41 (11):1020–9. doi:10.1016/j.jaerosci.2010.07.008.
  • Arnott, P. W., H. Moosmüller, C. F. Rogers, T. Jin, and R. Bruch. 1999. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description. Atmos. Environ. 33 (17):2845–52. doi:10.1016/S1352-2310(98)00361-6.
  • Atkins, P. W. 1998. Physical chemistry. Oxford, Melbourne, Tokyo: Oxford University Press.
  • Corrêa, S. F., L. Mota, L. B. Paiva, F. M. d Couto, M. G. d Silva, J. G. d Oliveira, M. S. Sthel, H. Vargas, and A. Miklós. 2011. Effects of ozone exposure on ‘Golden’ papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening. J. Appl. Phys. 109 (11):114701. doi:10.1063/1.3592353.
  • Covert, P. A., J. W. Cremer, and R. Signorell. 2017. Photoacoustic absorption spectroscopy of single optically trapped aerosol droplets. Proc. SPIE 10347, Optical Trapping and Optical Micromanipulation XIV, ed. Kishan Dholakia and Gabriel C. Spalding, 1034729, San Diego, CA, USA. doi:10.1117/12.2275627.
  • Cremer, J. W., P. A. Covert, E. A. Parmentier, and R. Signorell. 2017. Direct measurement of photoacoustic signal sensitivity to aerosol particle size. J. Phys. Chem. Lett. 8 (14):3398–403. doi:10.1021/acs.jpclett.7b01288.
  • Cremer, J. W., K. M. Thaler, C. Haisch, and R. Signorell. 2016. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun. 7:10941. doi:10.1038/ncomms10941.
  • Davies, N. W., C. Fox, K. Szpek, M. I. Cotterell, J. W. Taylor, J. D. Allan, P. I. Williams, J. Trembath, J. M. Haywood, and J. M. Langridge. 2019. Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmos. Meas. Tech. 12 (6):3417–34. doi:10.5194/amt-12-3417-2019.
  • Diveky, M. E., M. J. Gleichweit, S. Roy, and R. Signorell. 2021b. Data collection for: Shining new light on the kinetics of water uptake by organic aerosol particles. ETH Zürich Research Collection. doi:10.3929/ethz-b-000443481.
  • Diveky, M., M. J. Gleichweit, S. Roy, E. Bartalucci, and R. Signorell. 2020. Photoacoustics of single aerosol droplets immobilised by counter-propagating optical tweezers. Proc. SPIE 11463, Optical Trapping and Optical Micromanipulation XVII, 1146316, Online Only. doi:10.1117/12.2566041.
  • Diveky, M. E., M. J. Gleichweit, S. Roy, and R. Signorell. 2021. Shining new light on the kinetics of water uptake by organic aerosol particles. J. Phys. Chem. A 125 (17):3528–48. doi:10.1021/acs.jpca.1c00202.
  • Diveky, M. E., S. Roy, J. W. Cremer, G. David, and R. Signorell. 2019. Assessing relative humidity dependent photoacoustics to retrieve mass accommodation coefficients of single optically trapped aerosol particles. Phys. Chem. Chem. Phys. 21 (9):4721–31. doi:10.1039/c8cp06980h.
  • Diveky, M. E., S. Roy, G. David, J. W. Cremer, and R. Signorell. 2020. Fundamental investigation of photoacoustic signal generation from single aerosol particles at varying relative humidity. Photoacoustics 18:100170. doi:10.1016/j.pacs.2020.100170.
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu. 2016. Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. Journal of the Atmospheric Sciences 73 (11):4221–52. doi:10.1175/JAS-D-16-0037.1.
  • Gleichweit, M. J., M. Mohajer, D. Borgeaud, M. Diveky, G. David, and R. Signorell. 2022. Coupling between modulated Mie scattering and photoacoustic signal generation in optically trapped. Single aerosol particles. Proc. SPIE 12198, Optical Trapping and OpticalMicromanipulation XIX, 1219805. doi:10.1117/12.2633423.
  • Gyawali, M., W. P. Arnott, R. A. Zaveri, C. Song, H. Moosmuller, L. Liu, M. I. Mishchenko, L. W. A. Chen, M. C. Green, J. G. Watson, et al. 2012. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols. Atmos. Chem. Phys. 12 (5):2587–601. doi:10.5194/acp-12-2587-2012.
  • Haisch, C. 2012. Photoacoustic spectroscopy for analytical measurements. Meas. Sci. Technol. 23 (1):012001. doi:10.1088/0957-0233/23/1/012001.
  • Haisch, C., and R. Niessner. 2012. Photoacoustic analyzer for the artifact-free parallel detection of soot and NO2 in engine exhaust. Anal. Chem. 84 (17):7292–6. doi:10.1021/ac3017899.
  • Hale, G. M., and M. R. Querry. 1973. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12 (3):555–63. doi:10.1364/AO.12.000555.
  • Hu, B., D. Chen, and Q. Su. 2006. Photoacoustic phase study on the frequency dependence of phase angle and triplet state lifetime of Nd(III)-acetylacetonate. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 63 (1):55–9. doi:10.1016/j.saa.2005.04.028.
  • Iulian, O., A. Stefaniu, O. Ciocirlan, and A. Fedeleş. 2010. Refractive index in binary and ternary mixtures with diethylene glycol, 1,4-dioxane and water between 293.15-313.15K. UPB Sci. Bul. Ser. B: Chem. Mater. Sci. 72:37–44.
  • Kolb, C. E., R. A. Cox, J. P. D. Abbatt, M. Ammann, E. J. Davis, D. J. Donaldson, B. C. Garrett, C. George, P. T. Griffiths, D. R. Hanson, et al. 2010. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 10 (21):10561–605. doi:10.5194/acp-10-10561-2010.
  • Lack, D. A., M. S. Richardson, D. Law, J. M. Langridge, C. D. Cappa, R. J. McLaughlin, and D. M. Murphy. 2012. Aircraft instrument for comprehensive characterization of aerosol optical properties, part 2: Black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy. Aerosol Sci. Technol. 46 (5):555–68. doi:10.1080/02786826.2011.645955.
  • Lange, N. A. 2017. Langeś handbook of chemistry. New York: McGraw-Hill Education.
  • Latif, I., M. Toda, and T. Ono. 2020. Hermetically packaged microsensor for quality factor-enhanced photoacoustic biosensing. Photoacoustics 18:100189. doi:10.1016/j.pacs.2020.100189.
  • Linke, C., I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter. 2016. A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research. Atmos. Meas. Tech. 9 (11):5331–46. doi:10.5194/amt-9-5331-2016.
  • Mason, B., N. L. Wagner, G. Adler, E. Andrews, C. A. Brock, T. D. Gordon, D. A. Lack, A. E. Perring, M. S. Richardson, J. P. Schwarz, et al. 2018. An intercomparison of aerosol absorption measurements conducted during the SEAC4RS campaign. Aerosol Sci. Technol. 52 (9):1012–27. doi:10.1080/02786826.2018.1500012.
  • Mesquita, R. C., A. M. Mansanares, E. C. da Silva, P. R. Barja, L. C. M. Miranda, and H. Vargas. 2006. Open photoacoustic cell: Applications in plant photosynthesis studies. Instrum. Sci. Technol. 34 (12):33–58. doi:10.1080/10739140500373940.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 110 (11):844–78. doi:10.1016/j.jqsrt.2009.02.035.
  • Mota, L., R. Toledo, R. T. Faria, E. C. da Silva, H. Vargas, and I. Delgadillo-Holtfort. 2009. Thermally treated soil clays as ceramic raw materials: Characterisation by X-ray diffraction, photoacoustic spectroscopy and electron spin resonance. Appl. Clay Sci. 43 (2):243–7. doi:10.1016/j.clay.2008.07.025.
  • Murphy, D. M. 2009. The effect of water evaporation on photoacoustic signals in transition and molecular flow. Aerosol Sci. Technol. 43 (4):356–63. doi:10.1080/02786820802657392.
  • Paduano, L., R. Sartorio, G. D'Errico, and V. Vitagliano. 1998. Mutual diffusion in aqueous solution of ethylene glycol oligomers at 25 °C. Faraday Trans. 94 (17):2571–6. doi:10.1039/a803567i.
  • Raspet, R., W. V. Slaton, W. P. Arnott, and H. Moosmuller. 2003. Evaporation-condensation effects on resonant photoacoustics of volatile aerosols. J. Atmos. Oceanic Technol. 20 (5):685–95. doi:10.1175/1520-0426(2003)20<685:ECEORP>2.0.CO;2.
  • Roy, S., M. E. Diveky, and R. Signorell. 2020. Mass accommodation coefficients of water on organics from complementary photoacoustic and light scattering measurements on laser-trapped droplets. J. Phys. Chem. C 124 (4):2481–9. doi:10.1021/acs.jpcc.9b09934.
  • Rumble, J. R. 2017. CRC handbook of chemistry and physics. 98th ed. Boca Raton, FL: CRC Press.
  • Sani, E., and A. Dell’Oro. 2014. Optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 37:36–41. doi:10.1016/j.optmat.2014.04.035.
  • Shiraiwa, M., C. Pfrang, T. Koop, and U. Pöschl. 2012. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): Linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmos. Chem. Phys. 12 (5):2777–94. doi:10.5194/acp-12-2777-2012.
  • Shiraiwa, M., C. Pfrang, and U. Pöschl. 2010. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): The influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone. Atmos. Chem. Phys. 10 (8):3673–91. doi:10.5194/acp-10-3673-2010.
  • Stephens, M. A., and W. S. Tamplin. 1979. Saturated liquid specific heats of ethylene glycol homologs. J. Chem. Eng. Data 24 (2):81–2. doi:10.1021/je60081a027.
  • The Dow Chemical Company. 2007. "Tetraethylene glycol." Form No. 612-00005-0207X CRCG. Accessed December 2015. http://msdssearch.dow.com.
  • Winkler, P. M., A. Vrtala, R. Rudolf, P. E. Wagner, I. Riipinen, T. Vesala, K. E. J. Lehtinen, Y. Viisanen, and M. Kulmala. 2006. Condensation of water vapor: Experimental determination of mass and thermal accommodation coefficients. J. Geophys. Res. 111 (D19):D19202. doi:10.1029/2006JD007194.
  • Zelaya‐Angel, O., J. J. Alvarado‐Gil, R. Lozada‐Morales, H. Vargas, and A. Ferreira da Silva. 1994. Band‐gap shift in CdS semiconductor by photoacoustic spectroscopy: Evidence of a cubic to hexagonal lattice transition. Appl. Phys. Lett. 64 (3):291–3. doi:10.1063/1.111184.