776
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of a method to quantify the number concentrations of submicron water-insoluble aerosol particles based on filter sampling and complex forward-scattering amplitude measurements

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1013-1030 | Received 15 Mar 2023, Accepted 02 Jun 2023, Published online: 26 Jun 2023

References

  • Adachi, K., M. Kajino, Y. Zaizen, and Y. Igarashi. 2013. Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep. 3:2554. doi:10.1038/srep02554.
  • Adachi, K., Y. Tobo, M. Koike, G. Freitas, P. Zieger, and R. Krejci. 2022. Composition and mixing state of Arctic aerosol and cloud residual particles from long-term single-particle observations at Zeppelin Observatory, Svalbard. Atmos. Chem. Phys. 22 (21):14421–39. doi:10.5194/acp-22-14421-2022.
  • Brockmann, J. E. 2011. Aerosol transport in sampling lines and inlets. In Aerosol Measurement: Principles, techniques, and applications, Ed. P. Kulkarni, P. A. Baron, and K. Willeke, 69–105. 3rd ed. Hoboken, NJ: John Wiley & Sons.
  • Cho, Y. S., S. C. Hong, J. Choi, and J. H. Jung. 2019. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sens. Actuators. B Chem. 284:525–33. doi:10.1016/j.snb.2018.12.155.
  • Cornwell, G. C., C. M. Sultana, M. D. Petters, H. Al-Mashat, N. E. Rothfuss, O. Möhler, P. J. Demott, A. C. Martin, and K. A. Prather. 2022. Discrimination between individual dust and bioparticles using aerosol time-of-flight mass spectrometry. Aerosol Sci. Technol. 56 (7):592–608. doi:10.1080/02786826.2022.2055994.
  • Cremonesi, L., A. Passerini, A. Tettamanti, B. Paroli, B. Delmonte, S. Albani, F. Cavaliere, D. Viganò, G. Bettega, T. Sanvito, et al. 2020. Multiparametric optical characterization of airborne dust with single particle extinction and scattering. Aerosol Sci. Technol. 54 (4):353–66. doi:10.1080/02786826.2019.1699896.
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu. 2016. Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 73 (11):4221–52. doi:10.1175/JAS-D-16-0037.1.
  • Froyd, K. D., D. M. Murphy, C. A. Brock, P. Campuzano-Jost, J. E. Dibb, J.-L. Jimenez, A. Kupc, A. M. Middlebrook, G. P. Schill, K. L. Thornhill, et al. 2019. A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech. 12 (11):6209–39. doi:10.5194/amt-12-6209-2019.
  • Greenwald, R., M. H. Bergin, C. M. Carrico, and D. Grant. 2005. New real-time technique to measure the size distribution of water-insoluble aerosols. Environ. Sci. Technol. 39 (13):4967–73. doi:10.1021/es048366p.
  • Hernandez, M., A. E. Perring, K. Mccabe, G. Kok, G. Granger, and D. Baumgardner. 2016. Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. Atmos. Meas. Tech. 9 (7):3283–92. doi:10.5194/amt-9-3283-2016.
  • Hu, Y., X. Zhao, Y. Gu, X. Chen, X. Wang, P. Wang, Z. Zheng, and X. Dong. 2019. Significant broadband extinction abilities of bioaerosols. Sci. China Mater. 62 (7):1033–45. doi:10.1007/s40843-018-9411-9.
  • Japan Meteorological Agency. 2021. List of observation dates and locations for Kosa in 2021 (in Japanese). Accessed December 14, 2022. https://www.data.jma.go.jp/gmd/env/kosahp/kosa_table_2021.html.
  • Kanji, Z. A., L. A. Ladino, M. Krämer, D. J. Cziczo, M. Burkert-Kohn, Y. Boose, and H. Wex. 2017. Overview of ice nucleating particles. Meteorol. Monogr. 58:1.1–.33. doi:10.1175/AMSMONOGRAPHS-D-16-0006.1.
  • Karydis, V. A., A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld. 2016. Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys. 16 (3):1491–509. doi:10.5194/acp-16-1491-2016.
  • Kok, J. F., D. A. Ridley, Q. Zhou, R. L. Miller, C. Zhao, C. L. Heald, D. S. Ward, S. Albani, and K. Haustein. 2017. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 10:274–8. doi:10.1038/NGEO2912.
  • Mahowald, N., S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, and M. G. Flanner. 2014. The size distribution of desert dust aerosols and its impact on the earth system. Aeolian Res. 15:53–71. doi:10.1016/j.aeolia.2013.09.002.
  • Marsden, N. A., R. Ullrich, O. Möhler, S. Eriksen Hammer, K. Kandler, Z. Cui, P. I. Williams, M. J. Flynn, D. Liu, J. D. Allan, et al. 2019. Mineralogy and mixing state of North African mineral dust by online single-particle mass spectrometry. Atmos. Chem. Phys. 19 (4):2259–81. doi:10.5194/acp-19-2259-2019.
  • Martin, J., R. M. Gordon, and S. E. Fitzwater. 1991. The case for iron. Limnol. Oceanogr. 36 (8):1793–802. doi:10.4319/lo.1991.36.8.1793.
  • Moteki, N. 2020. Capabilities and limitations of the single-particle extinction and scattering method for estimating the complex refractive index and size-distribution of spherical and non-spherical submicron particles. J. Quant. Spectrosc. Radiat. Transfer 243:106811. doi:10.1016/j.jqsrt.2019.106811.
  • Moteki, N. 2021. Measuring the complex forward-scattering amplitude of single particles by self-reference interferometry: CAS-v1 protocol. Opt. Express. 29 (13):20688–714. doi:10.1364/OE.423175.
  • Moteki, N., K. Adachi, S. Ohata, A. Yoshida, T. Harigaya, M. Koike, and Y. Kondo. 2017. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nat. Commun. 8:15329. doi:10.1038/ncomms15329.
  • Moteki, N., and Y. Kondo. 2010. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation. Aerosol Sci. Technol. 44 (8):663–75. doi:10.1080/02786826.2010.484450.
  • Murphy, D. M. 2007. The design of single particle laser mass spectrometers. Mass Spectrom. Rev. 26 (2):150–65. doi:10.1002/mas.20113.
  • Ogura, I., M. Kotake, H. Sakurai, and K. Honda. 2016. Surface-collection efficiency of Nuclepore filters for nanoparticles. Aerosol Sci. Technol. 50 (8):846–56. doi:10.1080/02786826.2016.1200007.
  • Ohata, S., N. Moteki, J. Schwarz, D. Fahey, and Y. Kondo. 2013. Evaluation of a method to measure black carbon particles suspended in rainwater and snow samples. Aerosol Sci. Technol. 47 (10):1073–82. doi:10.1080/02786826.2013.824067.
  • Ohata, S., A. Yoshida, N. Moteki, K. Adachi, Y. Takahashi, M. Kurisu, and M. Koike. 2018. Abundance of light-absorbing anthropogenic iron oxide aerosols in the urban atmosphere and their emission sources. J. Geophys. Res. Atmos. 123:8115–34. doi:10.1029/2018JD028363.
  • Orsini, D. A., K. Rhoads, K. Mcelhoney, E. Schick, D. Koehler, and O. Hogrefe. 2008. A water cyclone to preserve insoluble aerosols in liquid flow—An interface to flow cytometry to detect airborne nucleic acid. Aerosol Sci. Technol. 42 (5):343–56. doi:10.1080/02786820802072881.
  • Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. Mcbride, and G. L. Farmer. 2007. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 34 (12):L12502. doi:10.1029/2007GL030284.
  • Peltier, R. E., R. J. Weber, and A. P. Sullivan. 2007. Investigating a liquid-based method for online organic carbon detection in atmospheric particles. Aerosol Sci. Technol. 41 (12):1117–27. doi:10.1080/02786820701777465.
  • Perring, A. E., J. P. Schwarz, D. Baumgardner, M. T. Hernandez, D. V. Spracklen, C. L. Heald, R. S. Gao, G. Kok, G. R. Mcmeeking, J. B. Mcquaid, et al. 2015. Airborne observations of regional variation in fluorescent aerosol across the United States. J. Geophys. Res. Atmos. 120 (3):1153–70. doi:10.1002/2014JD022495.
  • Potenza, M. A. C., T. Sanvito, and A. Pullia. 2015. Measuring the complex field scattered by single submicron particles. AIP Adv. 5 (11):117222. doi:10.1063/1.4935927.
  • Ridley, D. A., C. L. Heald, J. F. Kok, and C. Zhao. 2016. An observationally constrained estimate of global dust aerosol optical depth. Atmos. Chem. Phys. 16 (23):15097–117. doi:10.5194/acp-16-15097-2016.
  • Savage, N. J., C. E. Krentz, T. Könemann, T. T. Han, G. Mainelis, C. Pöhlker, and J. A. Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–302. doi:10.5194/amt-10-4279-2017.
  • Schwarz, J. P., R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbeheshti, D. G. Baumgardner, G. L. Kok, et al. 2006. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. 111 (D16):D16207. doi:10.1029/2006JD007076.
  • Sullivan, R. C., S. A. Guazzotti, D. A. Sodeman, Y. Tang, G. R. Carmichael, and K. A. Prather. 2007. Mineral dust is a sink for chlorine in the marine boundary layer. Atmos. Environ. 41 (34):7166–79. doi:10.1016/j.atmosenv.2007.05.047.
  • Tobo, Y., K. Adachi, P. J. Demott, T. C. J. Hill, D. S. Hamilton, N. M. Mahowald, N. Nagatsuka, S. Ohata, J. Uetake, Y. Kondo, et al. 2019. Glacially sourced dust as a potentially significant source of ice nucleating particles. Nat. Geosci. 12 (4):253–8. doi:10.1038/s41561-019-0314-x.
  • Tobo, Y., J. Uetake, H. Matsui, N. Moteki, Y. Uji, Y. Iwamoto, K. Miura, and R. Misumi. 2020. Seasonal trends of atmospheric ice nucleating particles over Tokyo. J. Geophys. Res. Atmos. 125 (23):e2020JD033658. doi:10.1029/2020JD033658.
  • Uetake, J., Y. Tobo, S. Kobayashi, K. Tanaka, S. Watanabe, P. J. Demott, and S. M. Kreidenweis. 2021. Visualization of the seasonal shift of a variety of airborne pollens in western Tokyo. Sci. Total Environ. 788:147623. doi:10.1016/j.scitotenv.2021.147623.
  • Weber, R. J., D. Orsini, Y. Daun, Y.-N. Lee, P. J. Klotz, and F. Brechtel. 2001. A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Sci. Technol. 35 (3):718–27. doi:10.1080/02786820152546761.
  • Yoshida, A., N. Moteki, and K. Adachi. 2022. Identification and particle sizing of submicron mineral dust by using complex forward-scattering amplitude data. Aerosol Sci. Technol. 56 (7):609–22. doi:10.1080/02786826.2022.2057839.
  • Yoshida, A., N. Moteki, S. Ohata, T. Mori, M. Koike, Y. Kondo, H. Matsui, N. Oshima, A. Takami, and K. Kita. 2020. Abundances and microphysical properties of light‐absorbing iron oxide and black carbon aerosols over East Asia and the Arctic. J. Geophys. Res. Atmos. 125 (15):e2019JD032301. doi:10.1029/2019JD032301.
  • Yoshida, A., N. Moteki, S. Ohata, T. Mori, R. Tada, P. Dagsson-Waldhauserová, and Y. Kondo. 2016. Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer. Aerosol Sci. Technol. 50 (3):1–4. doi:10.1080/02786826.2016.1146402.
  • Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P. H. Mcmurry. 2008. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA 105 (30):10291–6. doi:10.1073/pnas.0804860105.