306
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Measurement of the centrifugal particle mass analyzer transfer function

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 963-980 | Received 06 Mar 2023, Accepted 02 Jun 2023, Published online: 20 Jul 2023

References

  • Afroughi, M. J., F. Falahati, L. W. Kostiuk, and J. S. Olfert. 2019. Properties of carbon black produced by the thermal decomposition of methane in the products of premixed flames. J. Aerosol Sci. 131:13–27. doi:10.1016/j.jaerosci.2019.02.002.
  • Agarwal, J. K., and G. J. Sem. 1980. Continuous flow, single-particle-counting condensation nucleus counter. J. Aerosol Sci. 11 (4):343–57. doi:10.1016/0021-8502(80)90042-7.
  • Bell, D. M., D. Imre, S. T. Martin, and A. Zelenyuk. 2017. The properties and behavior of α-pinene secondary organic aerosol particles exposed to ammonia under dry conditions. Phys. Chem. Chem. Phys 19 (9):6497–507. doi:10.1039/C6CP08839B.
  • Beranek, J., D. Imre, and A. Zelenyuk. 2012. Real-time shape-based particle separation and detailed in situ particle shape characterization. Anal. Chem. 84 (3):1459–65. doi:10.1021/ac202235z.
  • Birmili, W., F. Stratmann, A. Wiedensohler, D. Covert, L. Russell, and O. Berg. 1997. Determination of differential mobility analyzer transfer functions using identical instruments in series. Aerosol Sci. Technol. 27 (2):215–23. doi:10.1080/02786829708965468.
  • Broda, K., J. Olfert, M. Irwin, G. Schill, G. McMeeking, E. Schnitzler, and W. Jäger. 2018. A novel inversion method to determine the mass distribution of non-refractory coatings on refractory black carbon using a centrifugal particle mass analyzer and single particle soot photometer. Aerosol Sci. Technol. 52 (5):567–78. doi:10.1080/02786826.2018.1433812.
  • Buckley, D. T., S. Kimoto, M.-H. Lee, N. Fukushima, and C. J. Hogan. Jr. 2017. A corrected two dimensional data inversion routine for tandem mobility-mass measurements. J. Aerosol Sci. 114:157–68. doi:10.1016/j.jaerosci.2017.09.012.
  • Collins, D. R., D. R. Cocker, R. C. Flagan, and J. H. Seinfeld. 2004. The scanning DMA transfer function. Aerosol Sci. Technol. 38 (8):833–50. doi:10.1080/027868290503082.
  • Dastanpour, R., A. Momenimovahed, K. Thomson, J. Olfert, and S. Rogak. 2017. Variation of the optical properties of soot as a function of particle mass. Carbon 124:201–11. doi:10.1016/j.carbon.2017.07.005.
  • Dumouchel, W., and F. O’brien, et al. 1989. Integrating a robust option into a multiple regression computing environment. In Computer science and statistics: Proceedings of the 21st symposium on the interface, 297–302. Alexandria, VA: American Statistical Association.
  • Fissan, H., D. Hummes, F. Stratmann, P. Büscher, S. Neumann, D. Pui, and D. Chen. 1996. Experimental comparison of four differential mobility analyzers for nanometer aerosol measurements. Aerosol Sci. Technol. 24 (1):1–13. doi:10.1080/02786829608965347.
  • Ghazi, R., H. Tjong, A. Soewono, S. N. Rogak, and J. S. Olfert. 2013. Mass, mobility, volatility, and morphology of soot particles generated by a Mckenna and inverted burner. Aerosol Sci. Technol. 47 (4):395–405. doi:10.1080/02786826.2012.755259.
  • Graves, B., J. Olfert, B. Patychuk, R. Dastanpour, and S. Rogak. 2015. Characterization of particulate matter morphology and volatility from a compression-ignition natural-gas direct-injection engine. Aerosol Sci. Technol. 49 (8):589–98. doi:10.1080/02786826.2015.1050482.
  • Graves, B., S. Engelke, C. Jo, H. G. Baldovi, J. De la Verpilliere, M. De Volder, and A. Boies. 2020. Plasma production of nanomaterials for energy storage: Continuous gas-phase synthesis of metal oxide cnt materials via a microwave plasma. Nanoscale 12 (8):5196–208. doi:10.1039/c9nr08886e.
  • Graves, B. M., C. R. Koch, and J. S. Olfert. 2017. Morphology and volatility of particulate matter emitted from a gasoline direct injection engine fuelled on gasoline and ethanol blends. J. Aerosol Sci. 105:166–78. doi:10.1016/j.jaerosci.2016.10.013.
  • Holland, P. W., and R. E. Welsch. 1977. Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods. 6 (9):813–27. doi:10.1080/03610927708827533.
  • Hummes, D., S. Neumann, H. Fissan, and F. Stratmann. 1996. Experimental determination of the transfer function of a differential mobility analyzer (DMA) in the nanometer size range. Part. Part. Syst. Charact. 13 (5):327–32. doi:10.1002/ppsc.19960130513.
  • Johnson, T. J., J. S. Olfert, R. Cabot, C. Treacy, C. U. Yurteri, C. Dickens, J. McAughey, and J. P. Symonds. 2014. Steady-state measurement of the effective particle density of cigarette smoke. J. Aerosol Sci. 75:9–16. doi:10.1016/j.jaerosci.2014.04.006.
  • Johnson, T. J., J. S. Olfert, R. Cabot, C. Treacy, C. U. Yurteri, C. Dickens, J. McAughey, and J. P. Symonds. 2015a. Transient measurement of the effective particle density of cigarette smoke. J. Aerosol Sci. 87:63–74. doi:10.1016/j.jaerosci.2015.05.006.
  • Johnson, T. J., J. S. Olfert, C. U. Yurteri, R. Cabot, and J. McAughey. 2015b. Hygroscopic effects on the mobility and mass of cigarette smoke particles. J. Aerosol Sci. 86:69–78. doi:10.1016/j.jaerosci.2015.04.005.
  • Johnson, T. J., M. Irwin, J. P. Symonds, J. S. Olfert, and A. M. Boies. 2018. Measuring aerosol size distributions with the aerodynamic aerosol classifier. Aerosol Sci. Technol. 52 (6):655–65. doi:10.1080/02786826.2018.1440063.
  • Karlsson, M. N., and B. G. Martinsson. 2003. Methods to measure and predict the transfer function size dependence of individual DMAs. J. Aerosol Sci. 34 (5):603–25. doi:10.1016/S0021-8502(03)00020-X.
  • Kazemimanesh, M., A. Baldelli, U. Trivanovic, O. Popovicheva, M. Timofeev, N. Shonija, Y. Obvintsev, C. Kuang, A. M. Jefferson, J. C. Corbin, et al. 2021. Particulate emissions from turbulent diffusion flames with entrained droplets: A laboratory simulation of gas flaring emissions. J. Aerosol Sci. 157:105807. doi:10.1016/j.jaerosci.2021.105807.
  • Knutson, E., and K. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–51. doi:10.1016/0021-8502(75)90060-9.
  • Kuwata, M., and Y. Kondo. 2009. Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters. Atmos. Chem. Phys. 9 (16):5921–32. doi:10.5194/acp-9-5921-2009.
  • Li, W., L. Li, and D.-R. Chen. 2006. A new deconvolution scheme for the retrieval of true DMA transfer function from tandem dma data. Aerosol Sci. Technol. 40 (12):1052–7. doi:10.1080/02786820600944331.
  • Liu, B. Y., and D. Y. Pui. 1974. A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. J. Colloid Interface Sci. 47 (1):155–71. doi:10.1016/0021-9797(74)90090-3.
  • Liu, D., J. Whitehead, M. R. Alfarra, E. Reyes-Villegas, D. V. Spracklen, C. L. Reddington, S. Kong, P. I. Williams, Y.-C. Ting, S. Haslett, et al. 2017. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nature Geosci. 10 (3):184–8. doi:10.1038/ngeo2901.
  • Marsden, N. A., M. J. Flynn, J. D. Allan, and H. Coe. 2018. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a laap-tof single-particle mass spectrometer. Atmos. Meas. Tech. 11 (1):195–213. doi:10.5194/amt-11-195-2018.
  • Martinsson, B. G., M. N. Karlsson, and G. Frank. 2001. Methodology to estimate the transfer function of individual differential mobility analyzers. Aerosol Sci. Technol. 35 (4):815–23. doi:10.1080/027868201753227361.
  • Momenimovahed, A., and J. Olfert. 2015. Effective density and volatility of particles emitted from gasoline direct injection vehicles and implications for particle mass measurement. Aerosol Sci. Technol. 49 (11):1051–62. doi:10.1080/02786826.2015.1094181.
  • Naseri, A. 2023. Empirical-CPMA-tfer_v3.0.0, Version 3.0.0. https://zenodo.org/record/7922015\#.ZFv2PuzMIXA
  • Naseri, A., T. Sipkens, S. Rogak, and J. Olfert. 2021a. An improved inversion method for determining two-dimensional mass distributions of non-refractory materials on refractory black carbon. Aerosol Sci. Technol. 55 (1):104–18. doi:10.1080/02786826.2020.1825615.
  • Naseri, A., T. Sipkens, S. Rogak, and J. Olfert. 2021b. Optimized instrument configurations for tandem particle mass analyzer and single particle-soot photometer experiments. J. Aerosol Sci. 160:105897. doi:10.1016/j.jaerosci.2021.105897.
  • Nilsson, P. T., A. C. Eriksson, L. Ludvigsson, M. E. Messing, E. Z. Nordin, A. Gudmundsson, B. O. Meuller, K. Deppert, E. C. Fortner, T. B. Onasch, et al. 2015. In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry. Nano Res. 8 (12):3780–95. doi:10.1007/s12274-015-0877-9.
  • Olfert, J. 2005. A numerical calculation of the transfer function of the fluted centrifugal particle mass analyzer. Aerosol Sci. Technol. 39 (10):1002–9. doi:10.1080/02786820500380222.
  • Olfert, J., and N. Collings. 2005. New method for particle mass classification—The Couette centrifugal particle mass analyzer. J. Aerosol Sci. 36 (11):1338–52. doi:10.1016/j.jaerosci.2005.03.006.
  • Olfert, J., K. S. Reavell, M. Rushton, and N. Collings. 2006. The experimental transfer function of the Couette centrifugal particle mass analyzer. J. Aerosol Sci. 37 (12):1840–52. doi:10.1016/j.jaerosci.2006.07.007.
  • Olfert, J., J. Symonds, and N. Collings. 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J. Aerosol Sci. 38 (1):69–82. doi:10.1016/j.jaerosci.2006.10.002.
  • Olfert, J. S., M. Dickau, A. Momenimovahed, M. Saffaripour, K. Thomson, G. Smallwood, M. E. Stettler, A. Boies, Y. Sevcenco, A. Crayford, et al. 2017. Effective density and volatility of particles sampled from a helicopter gas turbine engine. Aerosol Sci. Technol. 51 (6):704–14. doi:10.1080/02786826.2017.1292346.
  • Quiros, D. C., S. Hu, S. Hu, E. S. Lee, S. Sardar, X. Wang, J. S. Olfert, H. S. Jung, Y. Zhu, and T. Huai. 2015. Particle effective density and mass during steady-state operation of GDI, PFI, and diesel passenger cars. J. Aerosol Sci. 83:39–54. doi:10.1016/j.jaerosci.2014.12.004.
  • Rawat, V. K., D. T. Buckley, S. Kimoto, M.-H. Lee, N. Fukushima, and C. J. Hogan. Jr. 2016. Two dimensional size–mass distribution function inversion from differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) measurements. J. Aerosol Sci. 92:70–82. doi:10.1016/j.jaerosci.2015.11.001.
  • Sakai, S., and D. Rothamer. 2017. Effect of ethanol blending on particulate formation from premixed combustion in spark-ignition engines. Fuel 196:154–68. doi:10.1016/j.fuel.2017.01.070.
  • Sedlacek, A. J., III, T. B. Onasch, L. Nichman, E. R. Lewis, P. Davidovits, A. Freedman, and L. Williams. 2018. Formation of refractory black carbon by SP2-induced charring of organic aerosol. Aerosol Sci. Technol. 52 (12):1345–50. doi:10.1080/02786826.2018.1531107.
  • Shapiro, M., P. Vainshtein, D. Dutcher, M. Emery, M. Stolzenburg, D. Kittelson, and P. McMurry. 2012. Characterization of agglomerates by simultaneous measurement of mobility, vacuum aerodynamic diameter and mass. J. Aerosol Sci. 44:24–45. doi:10.1016/j.jaerosci.2011.08.004.
  • Sipkens, T., J. Olfert, and S. Rogak. 2020a. Inversion methods to determine two-dimensional aerosol mass-mobility distributions: A critical comparison of established methods. J. Aerosol Sci. 140:105484. doi:10.1016/j.jaerosci.2019.105484.
  • Sipkens, T., J. Olfert, and S. Rogak. 2020b. Inversion methods to determine two-dimensional aerosol mass-mobility distributions II: Existing and novel Bayesian methods. J. Aerosol Sci. 146:105565. doi:10.1016/j.jaerosci.2020.105565.
  • Sipkens, T. A., J. S. Olfert, and S. N. Rogak. 2020c. New approaches to calculate the transfer function of particle mass analyzers. Aerosol Sci. Technol. 54 (1):111–27. doi:10.1080/02786826.2019.1680794.
  • Sipkens, T. A., U. Trivanovic, A. Naseri, O. W. Bello, A. Baldelli, M. Kazemimanesh, A. K. Bertram, L. Kostiuk, J. C. Corbin, J. S. Olfert, et al. 2021. Using two-dimensional distributions to inform the mixing state of soot and salt particles produced in gas flares. J. Aerosol Sci. 158:105826. doi:10.1016/j.jaerosci.2021.105826.
  • Stratmann, F., T. Kauffeldt, D. Hummes, and H. Fissan. 1997. Differential electrical mobility analysis: A theoretical study. Aerosol Sci. Technol. 26 (4):368–83. doi:10.1080/02786829708965437.
  • Tavakoli, F., and J. Olfert. 2013. An instrument for the classification of aerosols by particle relaxation time: Theoretical models of the aerodynamic aerosol classifier. Aerosol Sci. Technol. 47 (8):916–26. doi:10.1080/02786826.2013.802761.
  • Ubogu, E. A., J. Cronly, B. Khandelwal, and S. Roy. 2018. Determination of the effective density and fractal dimension of PM emissions from an aircraft auxiliary power unit. J Environ Sci (China) 74:11–8. doi:10.1016/j.jes.2018.01.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.