367
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The effect of filter storage conditions on degradation of organic Aerosols

, &
Pages 890-902 | Received 01 Feb 2023, Accepted 08 Jun 2023, Published online: 18 Jul 2023

References

  • Apicella, B., A. Carpentieri, M. Alfè, R. Barbella, A. Tregrossi, P. Pucci, and A. Ciajolo. 2007. Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame. Proc. Combust. Inst. 31 (1):547–53. doi: 10.1016/j.proci.2006.08.014.
  • Atwi, K., Z. Cheng, O. el Hajj, C. Perrie, and R. Saleh. 2022. A dominant contribution to light absorption by methanol-insoluble brown carbon produced in the combustion of biomass fuels typically consumed in wildland fires in the United States. Environ. Sci: Atmos. 2 (2):182–91. doi: 10.1039/D1EA00065A.
  • Atwi, K., A. Mondal, J. Pant, Z. Cheng, O. El Hajj, I. Ijeli, H. Handa, and R. Saleh. 2021. Physicochemical properties and cytotoxicity of brown carbon produced under different combustion conditions. Atmos. Environ. 244:117881. doi: 10.1016/j.atmosenv.2020.117881.
  • Atwi, K., S. N. Wilson, A. Mondal, R. C. Edenfield, K. M. Symosko Crow, O. el Hajj, C. Perrie, C. K. Glenn, C. A. Easley, H. Handa, et al. 2022. Differential response of human lung epithelial cells to particulate matter in fresh and photochemically aged biomass-burning smoke. Atmos. Environ. 271:118929. doi: 10.1016/j.atmosenv.2021.118929.
  • Badia, J. H., E. Ramírez, R. Bringué, F. Cunill, and J. Delgado. 2021. New octane booster molecules for modern gasoline composition. Energy Fuels 35 (14):10949–97. doi: 10.1021/acs.energyfuels.1c00912.
  • Bateman, A. P., S. A. Nizkorodov, J. Laskin, and A. Laskin. 2011. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 13 (26):12199–212. doi: 10.1039/C1CP20526A.
  • Bhattarai, H., E. Saikawa, X. Wan, H. Zhu, K. Ram, S. Gao, S. Kang, Q. Zhang, Y. Zhang, G. Wu, et al. 2019. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmos. Res. 220:20–33. doi: 10.1016/j.atmosres.2019.01.004.
  • Blair, S. L., A. C. MacMillan, G. T. Drozd, A. H. Goldstein, R. K. Chu, L. Paša-Tolić, J. B. Shaw, N. Tolić, P. Lin, J. Laskin, et al. 2017. Molecular characterization of organosulfur compounds in biodiesel and diesel fuel secondary organic aerosol. Environ. Sci. Technol. 51 (1):119–27. doi: 10.1021/acs.est.6b03304.
  • Browne, E. C., X. Zhang, J. P. Franklin, K. J. Ridley, T. W. Kirchstetter, K. R. Wilson, C. D. Cappa, and J. H. Kroll. 2019. Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Sci. Technol. 53 (6):663–74. doi: 10.1080/02786826.2019.1599321.
  • Chen, L.-W., H. Antony, W. P. Moosmüller, J. C. Arnott, J. G. Chow, R. A. Watson, R. E. Susott, C. E. Babbitt, E. N. Wold, W. M. Lincoln, et al. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environ. Sci. Technol. 41 (12):4317–25. doi: 10.1021/es062364i.
  • Chen, Y., and T. C. Bond. 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10 (4):1773–87. doi: 10.5194/acp-10-1773-2010.
  • Cheng, Z., K. Atwi, O. el Hajj, I. Ijeli, D. Al Fischer, G. Smith, and R. Saleh. 2021. Discrepancies between brown carbon light-absorption properties retrieved from online and offline measurements. Aerosol Sci. Technol. 55 (1):92–103. doi: 10.1080/02786826.2020.1820940.
  • Cheng, Z., K. Atwi, T. Onyima, and R. Saleh. 2019. Investigating the dependence of light-absorption properties of combustion carbonaceous aerosols on combustion conditions. Aerosol Sci. Technol. 53 (4):419–34. doi: 10.1080/02786826.2019.1566593.
  • Cheng, Y., K. B He, F. K Duan, M. Zheng, Y. L. Ma, J. H. Tan, and Z. Y. Du. 2010. Improved measurement of carbonaceous aerosol: Evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods. Atmos. Chem. Phys. 10 (17):8533–48. doi: 10.5194/acp-10-8533-2010.
  • Cheng, Y., K-b He, Z-y Du, G. Engling, J-m Liu, Y-l Ma, M. Zheng, and R. J. Weber. 2016. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 127:355–64. doi: 10.1016/j.atmosenv.2015.12.035.
  • Chow, J. C., X. Wang, B. J. Sumlin, S. B. Gronstal, L.-W A. Chen, D. L. Trimble, S. D. Kohl, S. R. Mayorga, G. Riggio, P. R. Hurbain, et al. 2015. Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol Air Qual. Res. 15 (4):1145–59. doi: 10.4209/aaqr.2015.02.0106.
  • Chow, J. C., J. G. Watson, L.-W. Antony Chen, M. C. O. Chang, N. F. Robinson, D. Trimble, and S. Kohl. 2007. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 57 (9):1014–23. doi: 10.3155/1047-3289.57.9.1014.
  • Chow, J. C., J. G. Watson, J. Robles, X. Wang, L.-W. Antony Chen, D. L. Trimble, S. D. Kohl, R. J. Tropp, and K. K. Fung. 2011. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Anal. Bioanal. Chem. 401 (10):3141–52. doi: 10.1007/s00216-011-5103-3.
  • Dillner, A. M., C. H. Phuah, and J. R. Turner. 2009. Effects of post-sampling conditions on ambient carbon aerosol filter measurements. Atmos. Environ. 43 (37):5937–43. doi: 10.1016/j.atmosenv.2009.08.009.
  • el Hajj, O., K. Atwi, Z. Cheng, A. L. Koritzke, M. G. Christianson, N. S. Dewey, B. Rotavera, and R. Saleh. 2021. Two-stage aerosol formation in low-temperature combustion. Fuel 304:121322. doi: 10.1016/j.fuel.2021.121322.
  • EPA, U. S. 2009. US Environmental Protection Agency Air Quality System. Secondary US Environmental Protection Agency Air Quality System 2009.
  • Fioroni, G. M., M. J. Rahimi, C. K. Westbrook, S. W. Wagnon, W. J. Pitz, S. Kim, and R. L. McCormick. 2022. Chemical kinetic basis of synergistic blending for research octane number. Fuel 307:121865. doi: 10.1016/j.fuel.2021.121865.
  • Goldstein, A. H., C. D. Koven, C. L. Heald, and I. Y. Fung. 2009. Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the Southeastern United States. Proc. Natl. Acad. Sci. U S A 106 (22):8835–40. doi: 10.1073/pnas.0904128106.
  • Heald, C. L., J. de Gouw, A. H. Goldstein, A. B. Guenther, P. L. Hayes, W. Hu, G. Isaacman-VanWertz, J. L. Jimenez, F. N. Keutsch, A. R. Koss, et al. 2020. Contrasting reactive organic carbon observations in the Southeast United States (SOAS) and Southern California (CalNex). Environ. Sci. Technol. 54 (23):14923–35. doi: 10.1021/acs.est.0c05027.
  • Hettiyadura, A. P. S., I. M. Al-Naiema, D. D. Hughes, T. Fang, and E. A. Stone. 2019. Organosulfates in Atlanta, Georgia: Anthropogenic influences on biogenic secondary organic aerosol formation. Atmos. Chem. Phys. 19 (5):3191–206. doi: 10.5194/acp-19-3191-2019.
  • Ijaz, A., W. Kew, S. China, S. K. Schum, and L. R. Mazzoleni. 2022. Molecular characterization of organophosphorus compounds in wildfire smoke using 21-T Fourier transform-ion cyclotron resonance mass spectrometry. Anal. Chem. 94 (42):14537–45. doi: 10.1021/acs.analchem.2c00916.
  • Islam, M. M., S. E. Neyestani, R. Saleh, and A. P. Grieshop. 2022. Quantifying brown carbon light absorption in real-world biofuel combustion emissions. Aerosol Sci. Technol. 56 (6):502–16. doi: 10.1080/02786826.2022.2051425.
  • Javed, T., C. Lee, M. AlAbbad, K. Djebbi, M. Beshir, J. Badra, H. Curran, and A. Farooq. 2016. Ignition studies of N-heptane/iso-octane/toluene blends. Combust. Flame 171:223–33. doi: 10.1016/j.combustflame.2016.06.008.
  • Johnston, M. V., and D. E. Kerecman. 2019. Molecular characterization of atmospheric organic aerosol by mass spectrometry. Annu Rev Anal Chem (Palo Alto Calif) 12 (1):247–74. doi: 10.1146/annurev-anchem-061516-045135.
  • Kristensen, K., and M. Glasius. 2011. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during Spring. Atmos. Environ. 45 (27):4546–56. doi: 10.1016/j.atmosenv.2011.05.063.
  • Kuwayama, T., S. Collier, S. Forestieri, J. M. Brady, T. H. Bertram, C. D. Cappa, Q. Zhang, and M. J. Kleeman. 2015. Volatility of primary organic aerosol emitted from light duty gasoline vehicles. Environ. Sci. Technol. 49 (3):1569–77. doi: 10.1021/es504009w.
  • Laskin, A., J. Laskin, and S. A. Nizkorodov. 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115 (10):4335–82. doi: 10.1021/cr5006167.
  • Laskin, A., J. S. Smith, and J. Laskin. 2009. Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ. Sci. Technol. 43 (10):3764–71. doi: 10.1021/es803456n.
  • Lee, S., K. Baumann, J. J. Schauer, R. J. Sheesley, L. P. Naeher, S. Meinardi, D. R. Blake, E. S. Edgerton, A. G. Russell, and M. Clements. 2005. Gaseous and particulate emissions from prescribed burning in Georgia. Environ. Sci. Technol. 39 (23):9049–56. doi: 10.1021/es051583l.
  • Lin, P., P. K. Aiona, Y. Li, M. Shiraiwa, J. Laskin, S. A. Nizkorodov, and A. Laskin. 2016. Molecular characterization of brown carbon in biomass burning aerosol particles. Environ. Sci. Technol. 50 (21):11815–24. doi: 10.1021/acs.est.6b03024.
  • Lin, P., N. Bluvshtein, Y. Rudich, S. A. Nizkorodov, J. Laskin, and A. Laskin. 2017. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event. Environ. Sci. Technol. 51 (20):11561–70. doi: 10.1021/acs.est.7b02276.
  • Lin, P., L. T. Fleming, S. A. Nizkorodov, J. Laskin, and A. Laskin. 2018. Comprehensive molecular characterization of atmospheric brown carbon by high resolution mass spectrometry with electrospray and atmospheric pressure photoionization. Anal. Chem. 90 (21):12493–502. doi: 10.1021/acs.analchem.8b02177.
  • Mahilang, M., M. K. Deb, and S. Pervez. 2021. Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts. Chemosphere 262:127771. doi: 10.1016/j.chemosphere.2020.127771.
  • Massabò, D., L. Caponi, M. C. Bove, and P. Prati. 2016. Brown carbon and thermal–optical analysis: A correction based on optical multi-wavelength apportionment of atmospheric aerosols. Atmos. Environ. 125:119–25. doi: 10.1016/j.atmosenv.2015.11.011.
  • McMeeking, G. R., S. M. Kreidenweis, S. Baker, C. M. Carrico, J. C. Chow, J. L. Collett, Jr., W. M. Hao, A. S. Holden, T. W. Kirchstetter, W. C. Malm, et al. 2009. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. 114 (D19). doi: 10.1029/2009JD011836.
  • Michela, A., A. Barbara, T. Antonio, and C. Anna. 2008. Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame. Carbon 46 (15):2059–66. doi: 10.1016/j.carbon.2008.08.019.
  • Neyestani, S. E., S. Walters, G. Pfister, G. J. Kooperman, and R. Saleh. 2020. Direct radiative effect and public health implications of aerosol emissions associated with shifting to gasoline direct injection (GDI) technologies in light-duty vehicles in the United States. Environ. Sci. Technol. 54 (2):687–96. doi: 10.1021/acs.est.9b04115.
  • Nizkorodov, S. A., J. Laskin, and A. Laskin. 2011. Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys. Chem. Chem. Phys. 13 (9):3612–29. doi: 10.1039/c0cp02032j.
  • Perrino, C., L. Tofful, S. D. Torre, T. Sargolini, and S. Canepari. 2019. Biomass burning contribution to PM10 concentration in Rome (Italy): Seasonal, daily and two-hourly variations. Chemosphere 222:839–48. doi: 10.1016/j.chemosphere.2019.02.019.
  • Qi, Y., P. Fu, and D. A. Volmer. 2022. Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: An overview of recent non-petroleum applications. Mass Spectrom. Rev. 41 (5):647–61. doi: 10.1002/mas.21634.
  • Reid, J. S., R. Koppman, T. F. Eck, and D. P. Eleuterio. 2005. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5 (3):799–825. doi: 10.5194/acp-5-799-2005.
  • Riva, M., L. Heikkinen, D. M. Bell, O. Peräkylä, Q. Zha, S. Schallhart, M. P. Rissanen, D. Imre, T. Petäjä, J. A. Thornton, et al. 2019. Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. Npj Clim. Atmos. Sci. 2 (1):2. doi: 10.1038/s41612-018-0058-0.
  • Romonosky, D. E., Y. Li, M. Shiraiwa, A. Laskin, J. Laskin, and S. A. Nizkorodov. 2017. Aqueous photochemistry of secondary organic aerosol of α-Pinene and α-Humulene oxidized with ozone, hydroxyl radical, and nitrate radical. J. Phys. Chem. A 121 (6):1298–309. doi: 10.1021/acs.jpca.6b10900.
  • Russo, C., M. Alfè, J.-N. Rouzaud, F. Stanzione, A. Tregrossi, and A. Ciajolo. 2013. Probing structures of soot formed in premixed flames of methane, ethylene and benzene. Proc. Combust. Inst. 34 (1):1885–92. doi: 10.1016/j.proci.2012.06.127.
  • Saleh, R. 2020. From measurements to models: Toward accurate representation of brown carbon in climate calculations. Curr. Pollution Rep. 6 (2):90–104. doi: 10.1007/s40726-020-00139-3.
  • Saleh, R., Z. Cheng, and K. Atwi. 2018. The brown–black continuum of light-absorbing combustion aerosols. Environ. Sci. Technol. Lett. 5 (8):508–13. doi: 10.1021/acs.estlett.8b00305.
  • Schneider, E., H. Czech, O. Popovicheva, H. Lütdke, J. Schnelle-Kreis, T. Khodzher, C. P. Rüger, and R. Zimmermann. 2022. Molecular characterization of water-soluble aerosol particle extracts by ultrahigh-resolution mass spectrometry: Observation of industrial emissions and an atmospherically aged wildfire plume at Lake Baikal. ACS Earth Space Chem. 6 (4):1095–107. doi: 10.1021/acsearthspacechem.2c00017.
  • Schum, S. K., L. E. Brown, and L. R. Mazzoleni. 2020. MFAssignR: Molecular formula assignment software for ultrahigh resolution mass spectrometry analysis of environmental complex mixtures. Environ. Res. 191:110114. doi: 10.1016/j.envres.2020.110114.
  • Shao, C., H. Wang, N. Atef, Z. Wang, B. Chen, M. Almalki, Y. Zhang, C. Cao, J. Yang, and S. M. Sarathy. 2019. Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates (n-Heptane/Iso-Octane/Toluene). Proc. Combust. Inst. 37 (1):993–1001. doi: 10.1016/j.proci.2018.06.087.
  • Simoneit, B. R. T. 2002. Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17 (3):129–62. doi: 10.1016/S0883-2927(01)00061-0.
  • Smith, J. S., A. Laskin, and J. Laskin. 2009. Molecular characterization of biomass burning aerosols using high-resolution mass spectrometry. Anal. Chem. 81 (4):1512–21. doi: 10.1021/ac8020664.
  • Stubbs, D. C., L. H. Humphreys, A. Goldman, A. M. Childtree, J. S. Kush, and D. E. Scarborough. 2021. An experimental investigation into the wildland fire burning characteristics of loblolly pine needles. Fire Saf. J. 126:103471. doi: 10.1016/j.firesaf.2021.103471.
  • Susaeta, A., and P. Gong. 2019. Economic viability of longleaf pine management in the Southeastern United States. For. Policy Econ. 100:14–23. doi: 10.1016/j.forpol.2018.11.004.
  • Turpin, B. J., J. J. Huntzicker, and S. v Hering. 1994. Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmos. Environ. 28 (19):3061–71. doi: 10.1016/1352-2310(94)00133-6.
  • Turpin, B. J., P. Saxena, and E. Andrews. 2000. Measuring and simulating particulate organics in the atmosphere: Problems and prospects. Atmos. Environ. 34 (18):2983–3013. doi: 10.1016/S1352-2310(99)00501-4.
  • Verma, V., R. Rico-Martinez, N. Kotra, L. King, J. Liu, T. W. Snell, and R. J. Weber. 2012. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environ. Sci. Technol. 46 (20):11384–92. doi: 10.1021/es302484r.
  • Walhout, E. Q., H. Yu, C. Thrasher, J. M. Shusterman, and R. E. O’Brien. 2019. Effects of photolysis on the chemical and optical properties of secondary organic material over extended time scales. ACS Earth Space Chem. 3 (7):1226–36. doi: 10.1021/acsearthspacechem.9b00109.
  • Wang, Y., M. Hu, P. Lin, T. Tan, M. Li, N. Xu, J. Zheng, Z. Du, Y. Qin, Y. Wu, et al. 2019. Enhancement in particulate organic nitrogen and light absorption of humic-like substances over Tibetan Plateau due to long-range transported biomass burning emissions. Environ. Sci. Technol. 53 (24):14222–32. doi: 10.1021/acs.est.9b06152.
  • Wong, J. P. S., A. Nenes, and R. J. Weber. 2017. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging. Environ. Sci. Technol. 51 (15):8414–21. doi: 10.1021/acs.est.7b01739.
  • Wu, C., X. H. H. Huang, W. M. Ng, S. M. Griffith, and J. Z. Yu. 2016. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: Implications for inter-protocol data conversion. Atmos. Meas. Tech. 9 (9):4547–60. doi: 10.5194/amt-9-4547-2016.
  • Yang, L. H., M. Takeuchi, Y. Chen, and N. L. Ng. 2021. Characterization of thermal decomposition of oxygenated organic compounds in FIGAERO-CIMS. Aerosol Sci. Technol. 55 (12):1321–42. doi: 10.1080/02786826.2021.1945529.
  • Zhang, X., Y.-H. Lin, J. D. Surratt, and R. J. Weber. 2013. Sources, composition and absorption ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin. Environ. Sci. Technol. 47 (8):3685–93. doi: 10.1021/es305047b.
  • Zhang, H., L. D. Yee, B. H. Lee, M. P. Curtis, D. R. Worton, G. Isaacman-VanWertz, J. H. Offenberg, M. Lewandowski, T. E. Kleindienst, M. R. Beaver, et al. 2018. Monoterpenes are the largest source of summertime organic aerosol in the Southeastern United States. Proc. Natl. Acad. Sci. U S A 115 (9):2038–43. doi: 10.1073/pnas.1717513115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.