982
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Microfluidic platform for coupled studies of freezing behavior and final effloresced particle morphology in Snomax® containing aqueous droplets

ORCID Icon & ORCID Icon
Pages 427-439 | Received 05 Apr 2023, Accepted 22 Jun 2023, Published online: 01 Aug 2023

References

  • Adamski, J. C., J. A. Roberts, and R. H. Goldstein. 2006. Entrapment of bacteria in fluid inclusions in laboratory-grown halite. Astrobiology 6 (4):552–62. doi:10.1089/ast.2006.6.552.
  • Ahlawat, A., S. K. Mishra, H. Herrmann, P. Rajeev, T. Gupta, V. Goel, Y. Sun, and A. Wiedensohler. 2022. Impact of chemical properties of human respiratory droplets and aerosol particles on airborne viruses’ viability and indoor transmission. Viruses 14 (7):1497. doi:10.3390/v14071497.
  • Alba-Simionesco, C., B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak. 2006. Effects of confinement on freezing and melting. J. Phys. Condens. Matter 18 (6):R15–R68. doi:10.1088/0953-8984/18/6/R01.
  • Altaf, M. B., and M. A. Freedman. 2017. Effect of drying rate on aerosol particle morphology. J. Phys. Chem. Lett. 8 (15):3613–8. doi:10.1021/acs.jpclett.7b01327.
  • Ault, A. P., and J. L. Axson. 2017. Atmospheric aerosol chemistry: spectroscopic and microscopic advances. Anal. Chem. 89 (1):430–52. doi:10.1021/acs.analchem.6b04670.
  • Baustian, K. J., D. J. Cziczo, M. E. Wise, K. A. Pratt, G. Kulkarni, A. G. Hallar, and M. A. Tolbert. 2012. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach. J. Geophys. Res. 117 (D06):217. doi:10.1029/2011JD016784.
  • Beall, C. M., D. Lucero, T. C. Hill, P. J. Demott, M. D. Stokes, and K. A. Prather. 2020. Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments. Atmos. Meas. Tech. 13 (12):6473–86. doi:10.5194/amt-13-6473-2020.
  • Beall, C. M., J. M. Michaud, M. A. Fish, J. Dinasquet, G. C. Cornwell, M. D. Stokes, M. D. Burkart, T. C. Hill, P. J. Demott, and K. A. Prather. 2021. Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation. Atmos. Chem. Phys. 21 (11):9031–45. doi:10.5194/acp-21-9031-2021.
  • Bellouin, N., J. Quaas, E. Gryspeerdt, S. Kinne, P. Stier, D. Watson‐Parris, O. Boucher, K. S. Carslaw, M. Christensen, A. L. Daniau, et al. 2020. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58 (1). doi:10.1029/2019RG000660.
  • Benison, K. C. 2019. How to search for life in Martian chemical sediments and their fluid and solid inclusions using petrographic and spectroscopic methods. Front. Environ. Sci. 7:108. doi:10.3389/fenvs.2019.00108.
  • Bertram, T. H., R. E. Cochran, V. H. Grassian, and E. A. Stone. 2018. Sea spray aerosol chemical composition: Elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem. Soc. Rev. 47 (7):2374–400. doi:10.1039/c7cs00008a.
  • Brubaker, T., M. Polen, P. Cheng, V. Ekambaram, J. Somers, S. L. Anna, and R. C. Sullivan. 2020. Development and characterization of a “store and create” microfluidic device to determine the heterogeneous freezing properties of ice nucleating particles. Aerosol Sci. Technol. 54 (1):79–93. doi:10.1080/02786826.2019.1679349.
  • Burrows, S. M., W. Elbert, M. G. Lawrence, and U. Pöschl. 2009. Bacteria in the global atmosphere – part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 9 (23):9263–80. doi:10.5194/acp-9-9263-2009.
  • Cesur, R. M., I. M. Ansari, F. Chen, B. C. Clark, and M. A. Schneegurt. 2022. Bacterial growth in brines formed by the deliquescence of salts relevant to cold arid worlds. Astrobiology 22 (1):104–15. doi:10.1089/ast.2020.2336.
  • Demott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers. 2003. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 100 (25):14655–60. doi:10.1073/pnas.2532677100.
  • Demott, P. J., T. C. J. Hill, C. S. Mccluskey, K. A. Prather, D. B. Collins, R. C. Sullivan, M. J. Ruppel, R. H. Mason, V. E. Irish, T. Lee, et al. 2016. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA 113 (21):5797–803. doi:10.1073/pnas.1514034112.
  • Elabed, H., E. González-Tortuero, C. Ibacache-Quiroga, A. Bakhrouf, P. Johnston, K. Gaddour, J. Blázquez, and A. Rodríguez-Rojas. 2019. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol. 19 (1):142. doi:10.1186/s12866-019-1499-2.
  • Gao, K., F. Friebel, C.-W. Zhou, and Z. A. Kanji. 2022. Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification. Atmos. Chem. Phys. 22 (7):4985–5016. doi:10.5194/acp-22-4985-2022.
  • Ginot, F., T. Lenavetier, D. Dedovets, and S. Deville. 2020. Solute strongly impacts freezing under confinement. Appl. Phys. Lett. 116 (25):253701. doi:10.1063/5.0008925.
  • Haixia, C., and C. Guoxiang. 2015. Determining fluid compositions in the h2o-nacl-cacl2system with cryogenic raman spectroscopy: Application to natural fluid inclusions. Acta Geol. Sin. Engl. Ed. 89 (3):894–901. doi:10.1111/1755-6724.12487.
  • Hasenkopf, C. A., D. P. Veghte, G. P. Schill, S. Lodoysamba, M. A. Freedman, and M. A. Tolbert. 2016. Ice nucleation, shape, and composition of aerosol particles in one of the most polluted cities in the world: Ulaanbaatar, mongolia. Atmos. Environ. 139:222–9. doi:10.1016/j.atmosenv.2016.05.037.
  • Hawkins, L. N., and L. M. Russell. 2010. Polysaccharides, proteins, and phytoplankton fragments: Four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy. Adv. Meteorol. 2010:1–14. doi:10.1155/2010/612132.
  • Hidy, G. M. 2019. Atmospheric aerosols: Some highlights and highlighters, 1950 to 2018. Aerosol. Sci. Eng. 3 (1):1–20. doi:10.1007/s41810-019-00039-0.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: Wiley.
  • Isenrich, F. N., N. Shardt, M. Rösch, J. Nette, S. Stavrakis, C. Marcolli, Z. A. Kanji, A. J. Demello, and U. Lohmann. 2022. The microfluidic ice nuclei counter Zürich (Mincz): a platform for homogeneous and heterogeneous ice nucleation. Atmos. Meas. Tech. 15 (18):5367–81. doi:10.5194/amt-15-5367-2022.
  • Jahl, L. G., T. A. Brubaker, M. J. Polen, L. G. Jahn, K. P. Cain, B. B. Bowers, W. D. Fahy, S. Graves, and R. C. Sullivan. 2021. Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol. Sci. Adv. 7 (9):eabd3440. doi:10.1126/sciadv.abd3440.
  • Jayarathne, T., C. M. Sultana, C. Lee, F. Malfatti, J. L. Cox, M. A. Pendergraft, K. A. Moore, F. Azam, A. V. Tivanski, C. D. Cappa, et al. 2016. Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms. Environ. Sci. Technol. 50 (21):11511–20. doi:10.1021/acs.est.6b02988.
  • Kaluarachchi, C. P., V. W. Or, Y. Lan, E. S. Hasenecz, D. Kim, C. K. Madawala, G. P. Dorcé, K. J. Mayer, J. S. Sauer, C. Lee, et al. 2022. Effects of atmospheric aging processes on nascent sea spray aerosol physicochemical properties. ACS Earth Space Chem. 6 (11):2732–44. doi:10.1021/acsearthspacechem.2c00258.
  • Karimi, B., R. Nosrati, B. S. Fazly Bazzaz, M. Mirpour, M. Malboobi, and P. Owlia. 2020. A comparative evaluation of freezing criteria and molecular characterization of epiphytic ice-nucleating (ice+) and non-ice-nucleating (ice−) Pseudomonas syringae and pseudomonas fluorescens. J. Plant Pathol. 102:169–78. doi:10.1007/s42161-019-00402-7.
  • Keene, W. C., H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. Zhou, et al. 2007. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. 112 (D21):202. doi:10.1029/2007JD008464.
  • Knopf, D. A., P. A. Alpert, and B. Wang. 2018. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem. 2 (3):168–202. doi:10.1021/acsearthspacechem.7b00120.
  • Kohler, F., O. Pierre-Louis, and D. K. Dysthe. 2022. Crystal growth in confinement. Nat. Commun. 13 (1):6990. doi:10.1038/s41467-022-34330-5.
  • Korolev, A., G. Mcfarquhar, P. R. Field, C. Franklin, P. Lawson, Z. Wang, E. Williams, S. J. Abel, D. Axisa, S. Borrmann, et al. 2017. Mixed-phase clouds: progress and challenges. Meteorol. Monogr. 58 (1):5.1–.50. doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.
  • Krieger, U. K., C. Marcolli, and J. P. Reid. 2012. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 41 (19):6631–62. doi:10.1039/c2cs35082c.
  • Legh-Land, V., A. E. Haddrell, D. Lewis, D. Murnane, and J. P. Reid. 2021. Water uptake by evaporating PMDI aerosol prior to inhalation affects both regional and total deposition in the respiratory system. Pharmaceutics 13 (7):941. doi:10.3390/pharmaceutics13070941.
  • Lei, Z., Y. Chen, Y. Zhang, M. E. Cooke, I. R. Ledsky, N. C. Armstrong, N. E. Olson, Z. Zhang, A. Gold, J. D. Surratt, et al. 2022. Initial ph governs secondary organic aerosol phase state and morphology after uptake of isoprene epoxydiols (iepox). Environ. Sci. Technol. 56 (15):10596–607. doi:10.1021/acs.est.2c01579.
  • Li, L., J. R. Sanchez, F. Kohler, A. Røyne, and D. K. Dysthe. 2018. Microfluidic control of nucleation and growth of caco3. Crystal Growth Design 18 (8):4528–35. doi:10.1021/acs.cgd.8b00508.
  • Lindsley, W. G., T. A. Pearce, J. B. Hudnall, K. A. Davis, S. M. Davis, M. A. Fisher, R. Khakoo, J. E. Palmer, K. E. Clark, I. Celik, et al. 2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J. Occup. Environ. Hyg. 9 (7):443–9. doi:10.1080/15459624.2012.684582.
  • Mael, L. E., H. Busse, and V. H. Grassian. 2019. Measurements of immersion freezing and heterogeneous chemistry of atmospherically relevant single particles with micro-Raman spectroscopy. Anal. Chem. 91 (17):11138–45. doi:10.1021/acs.analchem.9b01819.
  • Mahrt, F., C. Rösch, K. Gao, C. H. Dreimol, M. A. Zawadowicz, and Z. A. Kanji. 2023. Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions. Atmos. Chem. Phys. 23 (2):1285–308. doi:10.5194/acp-23-1285-2023.
  • Marcolli, C. 2014. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 14 (4):2071–104. doi:10.5194/acp-14-2071-2014.
  • Mccoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo. 2016. On the relationships among cloud cover, mixed‐phase partitioning, and planetary albedo in GCMS. J. Adv. Model. Earth Syst. 8 (2):650–68. doi:10.1002/2015MS000589.
  • Meldrum, F. C., and C. O’Shaughnessy. 2020. Crystallization in confinement. Adv. Mater. 32 (31):2001068. doi:10.1002/adma.202001068.
  • Mukherjee, P., J. R. Reinfelder, and Y. Gao. 2020. Enrichment of calcium in sea spray aerosol in the arctic summer atmosphere. Mar. Chem. 227:103898. doi:10.1016/j.marchem.2020.103898.
  • Nandy, L., and C. S. Dutcher. 2018. Phase behavior of ammonium sulfate with organic acid solutions in aqueous aerosol mimics using microfluidic traps. J. Phys. Chem. B 122 (13):3480–90. doi:10.1021/acs.jpcb.7b10655.
  • Nandy, L., S. Liu, C. Gunsbury, X. Wang, M. A. Pendergraft, K. A. Prather, and C. S. Dutcher. 2019. Multistep phase transitions in sea surface microlayer droplets and aerosol mimics using microfluidic wells. ACS Earth Space Chem. 3 (7):1260–7. doi:10.1021/acsearthspacechem.9b00121.
  • Narayan, S., I. Makhnenko, D. B. Moravec, B. G. Hauser, A. J. Dallas, and C. S. Dutcher. 2020. Insights into the microscale coalescence behavior of surfactant-stabilized droplets using a microfluidic hydrodynamic trap. Langmuir 36 (33):9827–42. doi:10.1021/acs.langmuir.0c01414.
  • Narayanan, S. 2011. Gas assisted thin-film evaporation from confined spaces. ProQuest Dissertations and Theses 213.
  • Oppo, C., S. Bellandi, N. Degli Innocenti, A. M. Stortini, G. Loglio, E. Schiavuta, and R. Cini. 1999. Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Mar. Chem. 63 (3–4):235–53. doi:10.1016/s0304-4203(98)00065-6.
  • Ott, E.-J E., and M. A. Freedman. 2021. Influence of ions on the size dependent morphology of aerosol particles. ACS Earth Space Chem. 5 (9):2320–8. doi:10.1021/acsearthspacechem.1c00210.
  • Peterson, R. E., and B. J. Tyler. 2003. Surface composition of atmospheric aerosol: Individual particle characterization by TOF-SIMS. Appl. Surf. Sci. 203–204:751–6. doi:10.1016/S0169-4332(02)00812-7.
  • Polen, M., T. Brubaker, J. Somers, and R. C. Sullivan. 2018. Cleaning up our water: Reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice-nucleating particles. Atmos. Meas. Tech. 11 (9):5315–34. doi:10.5194/amt-11-5315-2018.
  • Polen, M., E. Lawlis, and R. C. Sullivan. 2016. The unstable ice nucleation properties of snomax® bacterial particles. JGR. Atmos. 121 (19):11,666–11,678. doi:10.1002/2016JD025251.
  • Reche, I., G. D’Orta, N. Mladenov, D. M. Winget, and C. A. Suttle. 2018. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12:1154–62. doi:10.1038/s41396-017-0042-4.
  • Reicher, N., C. Budke, L. Eickhoff, S. Raveh-Rubin, I. Kaplan-Ashiri, T. Koop, and Y. Rudich. 2019. Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean. Atmos. Chem. Phys. 19 (17):11143–58. doi:10.5194/acp-19-11143-2019.
  • Reicher, N., L. Segev, and Y. Rudich. 2018. The weizmann supercooled droplets observation on a microarray (wisdom) and application for ambient dust. Atmos. Meas. Tech. 11 (1):233–48. doi:10.5194/amt-11-233-2018.
  • Richards, D. A.-O., K. A.-O. Trobaugh, J. A.-O. Hajek-Herrera, C. L. Price, C. S. Sheldon, J. F. Davies, and R. A.-O. Davis. 2020. Ion-molecule interactions enable unexpected phase transitions in organic-inorganic aerosol. Sci. Adv. 6 (47):eabb5643.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi:10.1029/2018RG000615.
  • Roy, P., M. L. House, and C. S. Dutcher. 2021. A microfluidic device for automated high throughput detection of ice nucleation of snomax®. Micromachines 12 (3):296. doi:10.3390/mi12030296.
  • Roy, P., S. Liu, and C. S. Dutcher. 2021. Droplet interfacial tensions and phase transitions measured in microfluidic channels. Annu. Rev. Phys. Chem. 72:73–97. doi:10.1146/annurev-physchem-090419-105522.
  • Roy, P., L. E. Mael, T. C. J. Hill, L. Mehndiratta, G. Peiker, M. L. House, P. J. Demott, V. H. Grassian, and C. S. Dutcher. 2021. Ice nucleating activity and residual particle morphology of bulk seawater and sea surface microlayer. ACS Earth Space Chem. 5 (8):1916–28. doi:10.1021/acsearthspacechem.1c00175.
  • Roy, P., L. E. Mael, I. Makhnenko, R. Martz, V. H. Grassian, and C. S. Dutcher. 2020. Temperature-dependent phase transitions of aqueous aerosol droplet systems in microfluidic traps. ACS Earth Space Chem. 4 (9):1527–39. doi:10.1021/acsearthspacechem.0c00114.
  • Salter, M. E., E. Hamacher-Barth, C. Leck, J. Werner, C. M. Johnson, I. Riipinen, E. D. Nilsson, and P. Zieger. 2016. Calcium enrichment in sea spray aerosol particles. Geophys. Res. Lett. 43 (15):8277–85. doi:10.1002/2016GL070275.
  • Schill, S., S. Burrows, E. Hasenecz, E. Stone, and T. Bertram. 2018. The impact of divalent cations on the enrichment of soluble saccharides in primary sea spray aerosol. Atmosphere 9 (12):476. doi:10.3390/atmos9120476.
  • Schwidetzky, R., A. T. Kunert, M. Bonn, U. Pöschl, H. Ramløv, A. L. Devries, J. Fröhlich-Nowoisky, and K. Meister. 2020. Inhibition of bacterial ice nucleators is not an intrinsic property of antifreeze proteins. J. Phys. Chem. B 124 (24):4889–95. doi:10.1021/acs.jpcb.0c03001.
  • Sievering, H. 2004. Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res. 109 (D19):317. doi:10.1029/2003JD004315.
  • Silva, D. A., A. C. F. Brito, R. C. M. De Paula, J. P. A. Feitosa, and H. C. B. Paula. 2003. Effect of mono and divalent salts on gelation of native, na and deacetylated sterculia striata and sterculia urens polysaccharide gels. Carbohydr. Polym. 54 (2):229–36. doi:10.1016/s0144-8617(03)00163-2.
  • Stan, C. A., G. F. Schneider, S. S. Shevkoplyas, M. Hashimoto, M. Ibanescu, B. J. Wiley, and G. M. Whitesides. 2009. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip. 9 (16):2293–305. doi:10.1039/b906198c.
  • Steiner, A. L., S. D. Brooks, C. Deng, D. C. O. Thornton, M. W. Pendleton, and V. Bryant. 2015. Pollen as atmospheric cloud condensation nuclei. Geophys. Res. Lett. 42 (9):3596–602. doi:10.1002/2015GL064060.
  • Stevens, R., and A. Dastoor. 2019. A review of the representation of aerosol mixing state in atmospheric models. Atmosphere 10 (4):168. doi:10.3390/atmos10040168.
  • Suski, K. J., T. C. J. Hill, E. J. T. Levin, A. Miller, P. J. Demott, and S. M. Kreidenweis. 2018. Agricultural harvesting emissions of ice-nucleating particles. Atmos. Chem. Phys. 18 (18):13755–71. doi:10.5194/acp-18-13755-2018.
  • Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W. D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, et al. 2021. Short-lived climate forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 817–922. Cambridge, United Kingdom: Cambridge University Press.
  • Tarn, M. D., S. N. F. Sikora, G. C. E. Porter, J.-U. Shim, and B. J. Murray. 2021. Homogeneous freezing of water using microfluidics. Micromachines 12 (2):223. doi:10.3390/mi12020223.
  • Turner, M. A., F. Arellano, and L. M. Kozloff. 1990. Three separate classes of bacterial ice nucleation structures. J. Bacteriol. 172 (5):2521–6. doi:10.1128/jb.172.5.2521-2526.1990.
  • Vali, G. 1971. Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28 (3):402–9. doi:10.1175/1520-0469(1971)028<0402:qeoera>2.0.co;2.
  • Vazquez De Vasquez, M. G., B. A. Wellen Rudd, M. D. Baer, E. E. Beasley, and H. C. Allen. 2021. Role of hydration in magnesium versus calcium ion pairing with carboxylate: solution and the aqueous interface. J. Phys. Chem. B 125 (40):11308–19. doi:10.1021/acs.jpcb.1c06108.
  • Vergara-Temprado, J., A. K. Miltenberger, K. Furtado, D. P. Grosvenor, B. J. Shipway, A. A. Hill, J. M. Wilkinson, P. R. Field, B. J. Murray, and K. S. Carslaw. 2018. Strong control of southern ocean cloud reflectivity by ice-nucleating particles. Proc. Natl. Acad. Sci. USA 115 (11):2687–92. doi:10.1073/pnas.1721627115.
  • Vu, D., S. Gao, T. Berte, M. Kacarab, Q. Yao, K. Vafai, and A. Asa-Awuku. 2019. External and internal cloud condensation nuclei (ccn) mixtures: controlled laboratory studies of varying mixing states. Atmos. Meas. Tech. 12 (8):4277–89. doi:10.5194/amt-12-4277-2019.
  • Vuong, S. M., and S. L. Anna. 2012. Tuning bubbly structures in microchannels. Biomicrofluidics 6 (2):22004–2200418. doi:10.1063/1.3693605.
  • Wang, Z., M. Ordoubadi, H. Wang, and R. Vehring. 2021. Morphology and formation of crystalline leucine microparticles from a co-solvent system using multi-orifice monodisperse spray drying. Aerosol Sci. Technol. 55 (8):901–19. doi:10.1080/02786826.2021.1904129.
  • Wex, H., S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, et al. 2015. Intercomparing different devices for the investigation of ice nucleating particles using snomax® as test substance. Atmos. Chem. Phys. 15 (3):1463–85. doi:10.5194/acp-15-1463-2015.
  • Yao, Y., J. H. Curtis, J. Ching, Z. Zheng, and N. Riemer. 2022. Quantifying the effects of mixing state on aerosol optical properties. Atmos. Chem. Phys. 22 (14):9265–82. doi:10.5194/acp-22-9265-2022.
  • Zhang, C., Y. Zhang, M. J. Wolf, L. Nichman, C. Shen, T. B. Onasch, L. Chen, and D. J. Cziczo. 2020. The effects of morphology, mobility size, and secondary organic aerosol (soa) material coating on the ice nucleation activity of black carbon in the cirrus regime. Atmos. Chem. Phys. 20 (22):13957–84. doi:10.5194/acp-20-13957-2020.