136
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Filtration efficiency of woven metal fiber filter for aerosol generated by plasma torch metal cutting

, , , , , , & ORCID Icon show all
Pages 949-962 | Received 14 Feb 2023, Accepted 16 Jul 2023, Published online: 10 Aug 2023

References

  • ASHRAE Standard 52.2. 2017. Method of testing general ventilation air-cleaning devices for removal efficiency by particle size. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • Baskaran, R., V. Subramanian, J. Misra, R. Indira, P. Chellapandi, and B. Raj. 2009. Aerosol characterization and measurement techniques towards SFR safety studies. 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, Marseille, France, January 7–10.
  • Bergman, W., G. Larsen, R. Lopez, K. Williams, and C. Violet. 1990. The high efficiency steel filters for nuclear air cleaning (UCRL-JC-104586: CONF-900809-2). Lawrence Livermore National Lab. CA (USA).
  • Bian, Y., S. Wang, L. Zhang, and C. Chen. 2020. Influence of fiber diameter, filter thickness, and packing density on PM2.5 removal efficiency of electrospun nanofiber air filters for indoor applications. Build. Environ 170:106628. doi: 10.1016/j.buildenv.2019.106628.
  • Bortolassi, A. C. C., S. Nagarajan, B. de Araújo Lima, V. G. Guerra, M. L. Aguiar, V. Huon, L. Soussan, D. Cornu, P. Miele, and M. Bechelany. 2019. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C Mater. Biol. Appl. 102:718–29. doi: 10.1016/j.msec.2019.04.094.
  • Chae, N., M. Lee, S. Choi, B. Park, and J. Song. 2019. Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning. J. Hazard. Mater. 369:727–45. doi: 10.1016/j.jhazmat.2019.02.093.
  • Chang, D. Q., J. X. Liu, and S. C. Chen. 2018. Factors affecting particle depositions on electret filters used in residential HVAC systems and indoor air cleaners. Aerosol Air Qual. Res. 18 (12):3211–9. doi: 10.4209/aaqr.2018.10.0373.
  • Chen, C. Y. 1955. Filtration of aerosols by fibrous media. Chem. Rev. 55 (3):595–623. doi: 10.1021/cr50003a004.
  • Chen, L., S. Ding, Z. Liang, L. Zhou, H. Zhang, and C. Zhang. 2017. Filtration efficiency analysis of fibrous filters: Experimental and theoretical study on the sampling of agglomerate particles emitted from a GDI engine. Aerosol Sci. Technol. 51 (9):1082–92. doi: 10.1080/02786826.2017.1331293.
  • Choi, S., and N. Chae. 2018. Characteristics of aerosols from different metals with plasma arc torch. Bilbao, Spain: Aerosol Technology, 18–20.
  • Choi, H. J., M. Kumita, S. Hayashi, H. Yuasa, M. Kamiyama, T. Seto, C. J. Tsai, and Y. Otani. 2017. Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance. Aerosol Air Qual. Res. 17 (4):1052–62. doi: 10.4209/aaqr.2016.06.0256.
  • Ebadian, M., S. Dua, and H. Guha. 2001. Size distribution and rate of production of airborne particulate matter generated during metal cutting. National Energy Technology Lab. Morgantown, WV.
  • Givehchi, R., and Z. Tan. 2014. An overview of airborne nanoparticle filtration and thermal rebound theory. Aerosol Air Qual. Res. 14 (1):46–63. doi: 10.4209/aaqr.2013.07.0239.
  • Hutten, I. M. 2007. Chapter 4 – Raw materials for nonwoven filter media. In Handbook of nonwoven filter media, ed. I. M. Hutten, 103–94. 2nd ed. Butterworth-Heinemann, Oxford.
  • IAEA. 2011. Radioactive particles in the environment: Sources, particle characteristics, and analytical techniques, IAEA-TECDOC-1663. IAEA. Vienna.
  • Järvinen, A., M. Aitomaa, A. Rostedt, J. Keskinen, and J. Yli-Ojanperä. 2014. Calibration of the new electrical low pressure impactor (ELPI+). J. Aerosol. Sci. 69:150–9. doi: 10.1016/j.jaerosci.2013.12.006.
  • Kawara, N., M. Kumita, H. Kurachi, T. Seto, S. Kamba, T. Kondo, and Y. Otani. 2016. Sieving of aerosol particles with metal screens. Aerosol Sci. Technol 50 (6):535–41. doi: 10.1080/02786826.2016.1167275.
  • Kim, M. W., S. An, H. Seok, S. S. Yoon, and A. L. Yarin. 2019. Electrostatic transparent air filter membranes composed of metallized microfibers for particulate removal. ACS Appl. Mater. Interfaces. 11 (29):26323–32. doi: 10.1021/acsami.9b05686.
  • Klouda, G. A., R. A. Fletcher, J. G. Gillen, and J. R. Verkouteren. 2011. Aerosol collection efficiency of a graded metal-fiber filter at high airflow velocity (10 ms–1). Aerosol Sci. Technol. 45 (3):336–42. doi: 10.1080/02786826.2010.537399.
  • Ku, H. K., M. H. Lee, H. Boo, G. D. Song, D. Lee, K. Yoo, and B. G. Park. 2023. Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning. Nucl. Eng. Technol. 55 (5):1830–7. doi: 10.1016/j.net.2023.01.016.
  • Lee, K. W., and B. Y. H. Liu. 1980. On the minimum efficiency and the most penetrating particle size for fibrous filters. J. Air Waste Manag. Assoc. 30 (4):377–81.
  • Lee, K. W., and B. Y. H. Liu. 1982a. Experimental study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1 (1):35–46. doi: 10.1080/02786828208958577.
  • Lee, K. W., and B. Y. H. Liu. 1982b. Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1 (2):147–61. doi: 10.1080/02786828208958584.
  • Lee, M., W. Yang, N. Chae, and S. Choi. 2020a. Aerodynamic diameter distribution of aerosols from plasma arc cutting for steels at different cutting power levels. J. Radioanal. Nucl. Chem. 323 (1):613–24. doi: 10.1007/s10967-019-06967-y.
  • Lee, M., W. Yang, N. Chae, and S. Choi. 2020b. Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning. Nucl. Eng. Technol. 52 (5):1043–50. doi: 10.1016/j.net.2019.10.017.
  • Lee, M., W. Yang, N. Chae, and S. Choi. 2021. High resolution size characterization of particulate contaminants for radioactive metal waste treatment. Nucl. Eng. Technol 53 (7):2277–88. doi: 10.1016/j.net.2021.01.029.
  • Li, X., H. Qin, Z. You, and W. Yao. 2018. Prediction of the particles collection and pressuredrop characteristics across fibrous media. Sci. Technol. Built. Environ 24 (6):638–47. doi: 10.1080/23744731.2018.1441546.
  • Li, L., Y. Zhou, X. Li, X. Hou, Y. Xu, Z. Sun, H. Gu, and R. Ding. 2023. Three-dimensional numerical simulation and structural optimization of filtration performance of pleated cylindrical metal fiber filter. Sep. Purif. Technol. 311:123224. doi: 10.1016/j.seppur.2023.123224.
  • Mostofi, R., A. Noël, F. Haghighat, A. Bahloul, J. Lara, and Y. Cloutier. 2012. Impact of two particle measurement techniques on the determination of N95 class respirator filtration performance against ultrafine particles. J. Hazard. Mater. 217-218:51–7. doi: 10.1016/j.jhazmat.2012.02.058. 22464753
  • Mouret, G., S. Chazelet, D. Thomas, and D. Bemer. 2011. Discussion about the thermal rebound of nanoparticles. Sep. Purif. Technol. 78 (2):125–31. doi: 10.1016/j.seppur.2011.01.016.
  • NRC. 2001. Design, testing, and maintenance criteria for atmosphere cleanup system air-filtration and adsorption units of light-water-cooled nuclear power plants. Regulatory Guide 1.5. Rev.3. Washington, DC.
  • Oki, Y., M. Numajiri, T. Suzuki, Y. Kanda, T. Miura, K. Iijima, and K. Kondo. 1994. Particle size and fuming rate of radioactive aerosols generated during the heat cutting of activated metals. Appl. Radiat. Isot. 45 (5):553–62. doi: 10.1016/0969-8043(94)90197-X.
  • Ou, Q., M. M. Maricq, J. Pakko, T. B. Chanko, and D. Y. Pui. 2019. Design and evaluation of a sintered metal fiber filter for gasoline direct injection engine exhaust aftertreatment. J. Aerosol. Sci. 133:12–23. doi: 10.1016/j.jaerosci.2019.04.003.
  • Park, M., S. Lee, J. Kim, B. Lee, J. Lee, and Y. Ahn. 2016. Optimal design and performance evaluation of a metal fiber filter for capturing radioactive aerosols. Part. Sci. Technol. 34 (3):359–65. doi: 10.1080/02726351.2015.1089346.
  • Park, M., J. Yun, Y. Hahn, and Y. Song. 2012. Trend in development of metal fiber fabrication process. J. Kor. Powd. Met. Inst. 19 (6):458–65. doi: 10.4150/KPMI.2012.19.6.458.
  • Preining, O. 1998. The physical nature of very, very small particles and its impact on their behaviour. J. Aerosol. Sci. 29 (5-6):481–95. doi: 10.1016/S0021-8502(97)10046-5.
  • Seto, T., T. Furukawa, Y. Otani, K. Uchida, and S. Endo. 2010. Filtration of multi-walled carbon nanotube aerosol by fibrous filters. Aerosol Sci. Technol 44 (9):734–40. doi: 10.1080/02786826.2010.487881.
  • Severa, J., and J. Bár. 1991. Handbook of radioactive contamination and decontamination. Amsterdam, Netherlands: Elsevier.
  • Thomas, D., P. Penicot, P. Contal, D. Leclerc, and J. Vendel. 2001. Clogging of fibrous filters by solid aerosol particles experimental and modelling study. Chem. Eng. Sci. 56 (11):3549–61. doi: 10.1016/S0009-2509(01)00041-0.
  • Vincent, J. H. 2007. Aerosol sampling: Science, standards, instrumentation and applications. New York: John Wiley and Sons.
  • Vishnyakov, V. I., S. A. Kiro, and A. A. Ennan. 2013. Formation of primary particles in welding fume. J. Aerosol. Sci. 58:9–16. doi: 10.1016/j.jaerosci.2012.12.003.
  • Vishnyakov, V. I., S. A. Kiro, M. V. Oprya, O. D. Chursina, and A. A. Ennan. 2018. Numerical and experimental study of the fume chemical composition in gas metal arc welding. Aerosol. Sci. Eng. 2 (3):109–17. doi: 10.1007/s41810-018-0028-2.
  • Wang, H.-C., and G. Kasper. 1991. Filtration efficiency of nanometer-size aerosol particles. J. Aerosol. Sci. 22 (1):31–41. doi: 10.1016/0021-8502(91)90091-U.
  • Zhang, X., Y. S. Fan, G. J. Tian, H. Wang, H. K. Zhang, and W. Xie. 2019. Influence of fiber diameter on filtration performance of polyester fibers. Therm. Sci. 23 (4):2291–6. doi: 10.2298/TSCI1904291Z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.