178
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Detection of sub-5nm naturally charged carbonaceous materials from a sooting laminar premixed flame by a water condensation Particle Counter (WCPC) enhanced by a Di-Ethylene Glycol (DEG) saturator inlet

, , , & ORCID Icon
Pages 1069-1086 | Received 25 Apr 2023, Accepted 30 Jul 2023, Published online: 07 Sep 2023

References

  • Ahonen, L. R., J. Kangasluoma, J. Lammi, K. Lehtipalo, K. Hämeri, T. Petäjä, and M. Kulmala. 2017. First measurements of the number size distribution of 1–2 nm aerosol particles released from manufacturing processes in a cleanroom environment. Aerosol Sci. Technol. 51 (6):685–93. doi:10.1080/02786826.2017.1292347.
  • Attoui, M. 2018. Activation of sub 2 nm singly charged particles with butanol vapors in a boosted 3776 TSI CPC. J. Aerosol Sci. 126:47–57. doi:10.1016/j.jaerosci.2018.08.005.
  • Attoui, M., L. J. Perez-Lorenzo, C. A. Brock, and J. Fernandez de la Mora. 2023. High resolution characterization of a sheathed axisymmetric variable supersaturation condensation particle sizer. J. Aerosol Sci. 169:106112. doi:10.1016/j.jaerosci.2022.106112.
  • Avula, S., R. Remiarz, G. J. Chancellor, T. Anderson, D. C. Bjorkquist, R. Caldow, S. Morrel, F. R. Quant, S. V. Hering, and G. S. Lewis. 2021. Condensation particle counter false count performance, US Patent 10914667B2, filed October 25, 2019, and issued February 9, 2021.
  • Barmpounis, K., A. Ranjithkumar, A. Schmidt-Ott, M. Attoui, and G. Biskos. 2018. Enhancing the detection efficiency of condensation particle counters for sub-2 nm particles. J. Aerosol Sci. 117:44–53. doi:10.1016/j.jaerosci.2017.12.005.
  • Basile, G., A. Rolando, A. D'Alessio, A. D'Anna, and P. Minutolo. 2002. Coagulation and carbonization processes in slightly sooting premixed flames. Proc. Combust. Inst. 29 (2):2391–7. doi:10.1016/S1540-7489(02)80291-7.
  • Bockhorn, H., A. D’Anna, and A. F. Sarofim. 2009. Combustion generated fine carbonaceous particles. Edited by H. Wang. Universitätsverlag Karlsruhe. Karlsruhe: KIT Scientific. doi:10.5445/KSP/1000013744.
  • Brilke, S., J. Resch, M. Leiminger, G. Steiner, C. Tauber, P. J. Wlasits, and P. M. Winkler. 2020. Precision characterization of three ultrafine condensation particle counters using singly charged salt clusters in the 1–4 nm size range generated by a bipolar electrospray source. Aerosol Sci. Technol. 54 (4):396–409. doi:10.1080/02786826.2019.1708260.
  • Burcat, A., and B. Ruscic. 2005. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). Argonne, IL: Argonne National Lab. doi:10.2172/925269.
  • Carbone, F., F. Cattaneo, and A. Gomez. 2015. Structure of incipiently sooting partially premixed ethylene counterflow flames. Combust. Flame 162 (11):4138–48. doi:10.1016/j.combustflame.2015.08.008.
  • Carbone, F., K. Gleason, and A. Gomez. 2017. Probing gas-to-particle transition in a moderately sooting atmospheric pressure ethylene/air laminar premixed flame. Part I: Gas phase and soot ensemble characterization. Combust. Flame 181:315–28. doi:10.1016/j.combustflame.2017.01.029.
  • Carbone, F., K. Gleason, and A. Gomez. 2023. Soot research: Relevance and priorities by mid-century. In Combustion chemistry and the carbon neutral future. 1st ed., ed. K. Brezinsky. Cambridge, MA: Elsevier. doi:10.1016/B978-0-323-99213-8.00007-2.
  • Carbone, F., M. Attoui, and A. Gomez. 2016. Challenges of measuring nascent soot in flames as evidenced by high-resolution differential mobility analysis. Aerosol Sci. Technol. 50 (7):740–57. doi:10.1080/02786826.2016.1179715.
  • Carbone, F., M. R. Canagaratna, A. T. Lambe, J. T. Jayne, D. R. Worsnop, and A. Gomez. 2019. Exploratory analysis of a sooting premixed flame via on-line high resolution (APi–TOF) mass spectrometry. Proc. Combust. Inst. 37 (1):919–26. doi:10.1016/j.proci.2018.08.020.
  • Carbone, F., M. R. Canagaratna, A. T. Lambe, J. T. Jayne, D. R. Worsnop, and A. Gomez. 2021. Detection of weakly bound clusters in incipiently sooting flames via ion seeded dilution and collision charging for (APi-TOF) mass spectrometry analysis. Fuel 289:119820. doi:10.1016/j.fuel.2020.119820.
  • Carbone, F., S. Moslih, and A. Gomez. 2017. Probing gas-to-particle transition in a moderately sooting atmospheric pressure ethylene/air laminar premixed flame. Part II: Molecular clusters and nascent soot particle size distributions. Combust. Flame 181:329–41. doi:10.1016/j.combustflame.2017.02.021.
  • Cheng, Y. S. 2011. Condensation particle counters. In Aerosol measurement: Principles, techniques, and applications. 3rd ed., ed. P. Kulkarni, P. A. Baron, and K. Willeke, 381–92. Hoboken, NJ: John Wiley & Sons. doi:10.1002/9781118001684.ch17.
  • Collins, A. M., W. D. Dick, and F. J. Romay. 2013. A new coincidence correction method for condensation particle counters. Aerosol Sci. Technol. 47 (2):177–82. doi:10.1080/02786826.2012.737049.
  • Commodo, M., K. Kaiser, G. De Falco, P. Minutolo, F. Schulz, A. D'Anna, and L. Gross. 2019. On the early stages of soot formation: molecular structure elucidation by high-resolution atomic force microscopy. Combust. Flame 205:154–64. doi:10.1016/j.combustflame.2019.03.042.
  • D’Anna, A. 2009. Combustion-formed nanoparticles. Proc. Combust. Inst. 32 (1):593–613. doi:10.1016/j.proci.2008.09.005.
  • Eiguren-Fernandez, A., N. Kreisberg, and S. V. Hering. 2017. An online monitor of the oxidative capacity of aerosols (o-MOCA). Atmos. Meas. Tech. 10 (2):633–44. doi:10.5194/amt-10-633-2017.
  • Enroth, J., J. Kangasluoma, F. Korhonen, S. V. Hering, D. Picard, G. S. Lewis, M. Attoui, and T. Petäjä. 2018. On the time response determination of condensation particle counters. Aerosol Sci. Technol. 52 (7):778–87. doi:10.1080/02786826.2018.1460458.
  • Fernandez de la Mora, J. 2011. Heterogeneous nucleation with finite activation energy and perfect wetting: Capillary theory versus experiments with nanometer particles, and extrapolations on the smallest detectable nucleus. Aerosol Sci. Technol. 45 (4):543–54. doi:10.1080/02786826.2010.550341.
  • Fernandez de la Mora, J. 2017. Expanded flow rate range of high-resolution nanoDMAs via improved sample flow injection at the aerosol inlet slit. J. Aerosol Sci. 113:265–75. doi:10.1016/j.jaerosci.2017.07.020.
  • Fernandez de la Mora, J., and J. Kozlowski. 2013. Hand-held differential mobility analyzers of high resolution for 1–30 nm particles: Design and fabrication considerations. J. Aerosol Sci. 57:45–53. doi:10.1016/j.jaerosci.2012.10.009.
  • Fernandez de la Mora, J., L. J. Perez-Lorenzo, G. Arranz, M. Amo-Gonzalez, and H. Burtscher. 2017. Fast high-resolution nanoDMA measurements with a 25 ms response time electrometer. Aerosol Sci. Technol. 51 (6):724–34. doi:10.1080/02786826.2017.1296928.
  • Flagan, R. C. 1999. On differential mobility analyzer resolution. Aerosol Sci. Technol. 30 (6):556–70. doi:10.1080/027868299304417.
  • Flagan, R. C. 2011. Electrical mobility methods for submicrometer particle characterization. In Aerosol measurement: Principles, techniques, and applications. 3rd ed., ed. P. Kulkarni, P. A. Baron, and K. Willeke, 339–64. Hoboken, NJ: John Wiley & Sons, Inc. doi:10.1002/9781118001684.ch15.
  • Flagan, R. C., S. L. Kaufman, and G. J. Sem. 2005. Particle surface treatment for promoting condensation. Patent No. US7407531B2.
  • Fletcher, N. H. 1958. Size effect in heterogeneous nucleation. The Journal of Chemical Physics 29 (3):572–6. doi:10.1063/1.1744540.
  • Friedlander, S. K. 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. 2nd ed. New York: Oxford University Press.
  • Gamero-Castaño, M., and J. Fernandez de La Mora. 2000. A condensation nucleus counter (CNC) sensitive to singly charged sub-nanometer particles. J. Aerosol Sci. 31 (7):757–72. doi:10.1016/S0021-8502(99)00555-8.
  • Hering, S. V., and M. R. Stolzenburg. 2005. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 39 (5):428–36. doi:10.1080/027868290953416.
  • Hering, S. V., G. S. Lewis, and S. R. Spielman. 2020. Particle surface treatment for promoting condensation. Patent No. US20200408931A1.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, A. Eiguren-Fernandez, N. M. Kreisberg, C. Kuang, and M. Attoui. 2017. Detection near 1-nm with a laminar-flow, water-based condensation particle counter. Aerosol Sci. Technol. 51 (3):354–62. doi:10.1080/02786826.2016.1262531.
  • Hering, S. V., G. S. Lewis, S. R. Spielman, and A. Eiguren-Fernandez. 2019. A MAGIC concept for self-sustained, water-based, ultrafine particle counting. Aerosol Sci. Technol. 53 (1):63–72. doi:10.1080/02786826.2018.1538549.
  • Hering, S. V., S. R. Spielman, and G. S. Lewis. 2014. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48 (4):401–8. doi:10.1080/02786826.2014.881460.
  • Hewitt, R. E., H. F. Chappell, and J. J. Powell. 2020. Small and dangerous? Potential toxicity mechanisms of common exposure particles and nanoparticles. Curr. Opin. Toxicol. 19:93–8. doi:10.1016/j.cotox.2020.01.006.
  • Hinds, W. C. 1999. Aerosol technology—properties, behavior and measurement of airborne particles. 2nd ed. New York: John Willey & Sons.
  • Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird. 1964. Molecular theory of gases and liquids (appendix, table 1c). New York: John Willey & Sons.
  • Hoppel, W. A., and G. M. Frick. 1986. Ion—aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. J. Aerosol Sci. 5 (1):1–21. doi:10.1080/02786828608959073.
  • Iida, K., M. R. Stolzenburg, and P. H. McMurry. 2009. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci. Technol. 43 (1):81–96. doi:10.1080/02786820802488194.
  • Iida, K., M. R. Stolzenburg, P. H. McMurry, J. N. Smith, F. R. Quant, D. R. Oberreit, P. B. Keady, A. Eiguren-Fernandez, G. S. Lewis, N. M. Kreisberg, et al. 2008. An ultrafine, water-based condensation particle counter and its evaluation under field conditions. Aerosol Sci. Technol. 42 (10):862–71. doi:10.1080/02786820802339579.
  • Jiang, J., M. Chen, C. Kuang, M. Attoui, and P. H. McMurry. 2011. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Sci. Technol. 45 (4):510–21. doi:10.1080/02786826.2010.547538.
  • Johansson, K. O., M. P. Head-Gordon, P. E. Schrader, K. R. Wilson, and H. A. Michelsen. 2018. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361 (6406):997–1000. doi:10.1126/science.aat3417.
  • Kangasluoma, J., and M. Attoui. 2019. Review of sub-3 nm condensation particle counters, calibrations, and cluster generation methods. Aerosol Sci. Technol. 53 (11):1277–310. doi:10.1080/02786826.2019.1654084.
  • Kangasluoma, J., C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä. 2014. Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmos. Meas. Tech. 7 (3):689–700. doi:10.5194/amt-7-689-2014.
  • Kee, R. J., J. Warnatz, and J. A. Miller. 1983. A FORTRAN computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients. Sandia National Laboratories Report SAND86-8246, Livermore, CA.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–51. doi:10.1016/0021-8502(75)90060-9.
  • Kuang, C., M. Chen, P. H. McMurry, and J. Wang. 2012. Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei. Aerosol Sci. Technol. 46 (3):309–15. doi:10.1080/02786826.2011.626815.
  • Kuldinow, D., A. Przybylak, L. J. Perez Lorenzo, D. Oberreit, and J. Fernandez de la Mora. 2022. Cluster activation studies with a diffusive condensation particle counter: Effect of chemical composition. J. Aerosol Sci. 161:105917. doi:10.1016/j.jaerosci.2021.105917.
  • Kulkarni, P., P. A. Baron, and K. Willeke. 2011. Aerosol measurement: Principles, techniques, and applications. 3rd ed. Hoboken, NJ: John Willey & Sons.
  • Kumar, P., P. Fennell, J. Symonds, and R. Britter. 2008. Treatment of losses of ultrafine aerosol particles in long sampling tubes during ambient measurements. Atmos. Environ. 42 (38):8819–26. doi:10.1016/j.atmosenv.2008.09.003.
  • Larriba-Andaluz, C., and F. Carbone. 2021. The size-mobility relationship of ions, aerosols, and other charged particle matter. J. Aerosol Sci. 151:105659. doi:10.1016/j.jaerosci.2020.105659.
  • Lehtipalo, K., J. Kontkanen, J. Kangasluoma, A. Franchin, D. Wimmer, S. Schobesberger, H. Junninen, T. Petäjä, M. Sipilä, and D. Worsnop. 2014. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier. Boreal Environ. Res. 19:215–236.
  • Lewis, G. S., and S. V. Hering. 2013. Minimizing concentration effects in water-based, laminar-flow condensation particle counters. Aerosol Sci. Technol. 47 (6):645–54. doi:10.1080/02786826.2013.779629.
  • Lighty, J. S., J. M. Veranth, and A. F. Sarofim. 2000. Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 50 (9):1565–618. doi:10.1080/10473289.2000.10464197.
  • Manisalidis, I., E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou. 2020. Environmental and health impacts of air pollution: A review. Front. Public Health. 8:14. doi:10.3389/fpubh.2020.00014.
  • McMurry, P. H. 2000. The history of condensation nucleus counters. Aerosol Sci. Technol. 33 (4):297–322. doi:10.1080/02786820050121512.
  • MEGlobal. 2023. Diethylene glycol. https://www.meglobal.biz/wp-content/uploads/2022/05/DEG_Guide_Rev_2022_W6.pdf.
  • Moreno-Ríos, A. L., L. P. Tejeda-Benítez, and C. F. Bustillo-Lecompte. 2022. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 13 (1):101147. doi:10.1016/j.gsf.2021.101147.
  • Nel, A., T. Xia, L. Mädler, and N. Li. 2006. Toxic potential of materials at the nanolevel. Science 311 (5761):622–7. doi:10.1126/science.1114397.
  • NIST Chemistry WebBook. 2023. https://webbook.nist.gov/chemistry/.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113 (7):823–39. doi:10.1289/ehp.7339.
  • Pedata, P., T. Stoeger, R. Zimmermann, A. Peters, G. Oberdörster, and A. D'Anna. 2015. Are we forgetting the smallest, sub 10 nm combustion generated particles? Part. Fibre Toxicol. 12 (1):34. doi:10.1186/s12989-015-0107-3.
  • Picard, D., M. Attoui, and K. Sellegri. 2019. B3010: A boosted TSI 3010 condensation particle counter for airborne studies. Atmos. Meas. Tech. 12 (4):2531–43. doi:10.5194/amt-12-2531-2019.
  • Ranzi, E., A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. P. Kelley, and C. K. Law. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38 (4):468–501. doi:10.1016/j.pecs.2012.03.004.
  • Riipinen, I., H. E. Manninen, T. Yli-Juuti, M. Boy, M. Sipilä, M. Ehn, H. Junninen, T. Petäjä, and M. Kulmala. 2009. Applying the condensation particle counter battery (CPCB) to study the water-affinity of freshly-formed 2-9nm particles in boreal forest. Atmos. Chem. Phys. 9 (10):3317–30. doi:10.5194/acp-9-3317-2009.
  • Rönkkö, T., and H. Timonen. 2019. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas. J. Alzheimers. Dis. 72 (1):15–28. doi:10.3233/JAD-190170.
  • Rundel, J. A., C. M. Thomas, P. E. Schrader, K. R. Wilson, K. O. Johansson, R. P. Bambha, and H. A. Michelsen. 2022. Promotion of particle formation by resonance-stabilized radicals during hydrocarbon pyrolysis. Combust. Flame 243:111942. doi:10.1016/j.combustflame.2021.111942.
  • Schraufnagel, D. E. 2020. The health effects of ultrafine particles. Exp. Mol. Med. 52 (3):311–7. doi:10.1038/s12276-020-0403-3.
  • Schulz, F., M. Commodo, K. Kaiser, G. De Falco, P. Minutolo, G. Meyer, A. D′Anna, and L. Gross. 2019. Insights into incipient soot formation by atomic force microscopy. Proc. Combust. Inst. 37 (1):885–92. doi:10.1016/j.proci.2018.06.100.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics : From air pollution to climate change. 3rd ed. New York: John Wiley & Sons.
  • Seto, T., K. Okuyama, L. de Juan, and J. Fernandez de la Mora. 1997. Condensation of supersaturated vapors on monovalent and divalent ions of varying size. J. Chem. Phys. 107 (5):1576–85. doi:10.1063/1.474510.
  • Sgro, L., and J. Fernandez de la Mora. 2004. A simple turbulent mixing CNC for charged particle detection down to 1.2 nm. Aerosol Sci. Technol. 38 (1):1–11. doi:10.1080/02786820300982.
  • Sharma, G., M. Wang, M. Attoui, X. You, and P. Biswas. 2021. Measurement of sub-3 nm flame-generated particles using butanol CPCs in boosted conditions. Aerosol Sci. Technol. 55 (7):785–94. doi:10.1080/02786826.2021.1896675.
  • Sipilä, M., K. Lehtipalo, M. Kulmala, T. Petäjä, H. Junninen, P. P. Aalto, H. E. Manninen, E.-M. Kyrö, E. Asmi, I. Riipinen, et al. 2008. Applicability of condensation particle counters to measure atmospheric clusters. Atmos. Chem. Phys. 8 (14):4049–60. doi:10.5194/acp-8-4049-2008.
  • Smyth, K. C., J. H. Miller, R. C. Dorfman, W. G. Mallard, and R. J. Santoro. 1985. Soot inception in a methane/air diffusion flame as characterized by detailed species profiles. Combust. Flame 62 (2):157–81. doi:10.1016/0010-2180(85)90143-9.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. J. Aerosol Sci. 42 (6):421–32. doi:10.1080/02786820802157823.
  • Thomson, J. J. 1903. Conduction of electricity through gases. New York: Cambridge University Press.
  • TSI application note CPC-002 (A4). 2023. https://tsi.com/getmedia/aed04052-5056-4fa4-b586-d648f1bb5262/CPC-002-appnote-A4?ext=.pdf
  • Ude, S., and J. Fernandez de La Mora. 2005. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36 (10):1224–37. doi:10.1016/j.jaerosci.2005.02.009.
  • Vanhanen, J., J. Mikkilä, K. Lehtipalo, M. Sipilä, H. E. Manninen, E. Siivola, T. Petäjä, and M. Kulmala. 2011. Particle size magnifier for nano-CN detection. Aerosol Sci. Technol. 45 (4):533–42. doi:10.1080/02786826.2010.547889.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33 (1):41–67. doi:10.1016/j.proci.2010.09.009.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19 (3):387–9. doi:10.1016/0021-8502(88)90278-9.
  • Winkler, P. M., and P. E. Wagner. 2022. Characterization techniques for heterogeneous nucleation from the gas phase. J. Aerosol Sci. 159:105875. doi:10.1016/j.jaerosci.2021.105875.
  • Winkler, P. M., G. Steiner, A. Vrtala, G. P. Reischl, M. Kulmala, and P. E. Wagner. 2011. Unary and binary heterogeneous nucleation of organic vapors on monodisperse WOx seed particles with diameters down to 1.4 nm. Aerosol Sci. Technol. 45 (4):493–8. doi:10.1080/02786826.2010.547536.
  • Winkler, P. M., G. Steiner, A. Vrtala, H. Vehkamäki, M. Noppel, K. E. J. Lehtinen, G. P. Reischl, P. E. Wagner, and M. Kulmala. 2008. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319 (5868):1374–7. doi:10.1126/science.1149034.
  • Wlasits, P. J., D. Stolzenburg, C. Tauber, S. Brilke, S. H. Schmitt, P. M. Winkler, and D. Wimmer. 2020. Counting on chemistry: laboratory evaluation of seed-material-dependent detection efficiencies of ultrafine condensation particle counters. Atmos. Meas. Tech. 13 (7):3787–98. doi:10.5194/amt-13-3787-2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.