199
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Chemical characterization of biomass pyrolysis oil facilitated by aerosolization and size separation

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1218-1235 | Received 04 May 2023, Accepted 21 Aug 2023, Published online: 19 Sep 2023

References

  • Alsbou, E., and B. Helleur. 2014. Direct infusion mass spectrometric analysis of bio-oil using ESI-ion-trap MS. Energy Fuels 28 (1):578–90. doi:10.1021/ef4018288.
  • Anouti, S., G. Haarlemmer, M. Déniel, and A. Roubaud. 2016. Analysis of physicochemical properties of bio-oil from hydrothermal liquefaction of blackcurrant pomace. Energy Fuels 30 (1):398–406. doi:10.1021/acs.energyfuels.5b02264.
  • Bridgwater, A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. doi:10.1016/j.biombioe.2011.01.048.
  • Bridgwater, A. V., D. Meier, and D. Radlein. 1999. An overview of fast pyrolysis of biomass. Org Geochem 30 (12):1479–93. doi:10.1016/S0146-6380(99)00120-5.
  • Burkle 2022. Viscosity of liquids. Viscosity - the right pump for each liquid - bürkle gmbh. Accessed September 22, 2022. https://www.buerkle.de/en/knowhow/good-to-know/viscosity-of-liquids.
  • Buss, W., J. Hertzog, J. Pietrzyk, V. Carré, C. Logan Mackay, F. Aubriet, and O. Mašek. 2021. Comparison of pyrolysis liquids from continuous and batch biochar production—influence of feedstock evidenced by FTICR MS. Energies (Basel) 14 (1):9. doi:10.3390/en14010009.
  • Cain, J., A. Laskin, M. R. Kholghy, M. J. Thomson, and H. Wang. 2014. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame. Phys. Chem. Chem. Phys. 16 (47):25862–75. doi:10.1039/c4cp03330b.
  • Carrasco, J. L., S. Gunukula, A. A. Boateng, C. A. Mullen, W. J. DeSisto, and M. C. Wheeler. 2017. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production. Fuel 193:477–84. doi:10.1016/j.fuel.2016.12.063.
  • Chan, Y. H., S. K. Loh, B. L. F. Chin, C. L. Yiin, B. S. How, K. W. Cheah, M. K. Wong, A. C. M. Loy, Y. L. Gwee, S. L. Y. Lo, et al. 2020. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects. Chem. Eng. J. 397 (May):125406. doi:10.1016/j.cej.2020.125406.
  • Clingenpeel, A. C., T. R. Fredriksen, K. Qian, and M. R. Harper. 2018. Comprehensive characterization of petroleum acids by distillation, solid phase extraction separation, and Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 32 (9):9271–9. doi:10.1021/acs.energyfuels.8b02085.
  • Cole, D. P., E. A. Smith, D. Dalluge, D. M. Wilson, E. A. Heaton, R. C. Brown, and Y. J. Lee. 2013. Molecular characterization of nitrogen-containing species in switchgrass bio-oils at various harvest times. Fuel 111:718–26. doi:10.1016/j.fuel.2013.04.064.
  • Conway, J. R., A. Lex, and N. Gehlenborg. 2017. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 33 (18):2938–40. doi:10.1093/bioinformatics/btx364.
  • Czernik, S., and A. V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18 (2):590–8. doi:10.1021/ef034067u.
  • DeRieux, W. S. W., Y. Li, P. Lin, J. Laskin, A. Laskin, A. K. Bertram, S. A. Nizkorodov, and M. Shiraiwa. 2018. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmos. Chem. Phys. 18 (9):6331–51. doi:10.5194/acp-18-6331-2018.
  • Dier, T. K. F., M. Fleckenstein, H. Militz, and D. A. Volmer. 2017. Exploring the potential of high resolution mass spectrometry for the investigation of lignin-derived phenol substitutes in phenolic resin syntheses. Anal. Bioanal. Chem. 409 (13):3441–51. doi:10.1007/s00216-017-0282-1.
  • Donahue, N. M., J. H. Kroll, S. N. Pandis, and A. L. Robinson. 2012. A two-dimensional volatility basis set-Part 2: Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys. 12 (2):615–34. doi:10.5194/acp-12-615-2012.
  • Dubuis, A., A. Le Masle, L. Chahen, E. Destandau, and N. Charon. 2020. Off-line comprehensive size exclusion chromatography × reversed-phase liquid chromatography coupled to high resolution mass spectrometry for the analysis of lignocellulosic biomass products. J. Chromatogr. A 1609:460505. doi:10.1016/j.chroma.2019.460505.
  • Edgeworth, R., B. J. Dalton, and T. Parnell. 1984. The pitch drop experiment. Eur. J. Phys. 5 (4):198–200. doi:10.1088/0143-0807/5/4/003.
  • Elkasabi, Y., V. Wyatt, K. Jones, G. D. Strahan, C. A. Mullen, and A. A. Boateng. 2020. Hydrocarbons extracted from advanced pyrolysis bio-oils: Characterization and refining. Energy Fuels 34 (1):483–90. doi:10.1021/acs.energyfuels.9b03189.
  • Fonts, I., M. Atienza-Martínez, H. H. Carstensen, M. Benés, A. P. P. Pires, M. Garcia-Perez, and R. Bilbao. 2021. Thermodynamic and physical property estimation of compounds derived from the fast pyrolysis of lignocellulosic materials. Energy Fuels 35 (21):17114–37. doi:10.1021/acs.energyfuels.1c01709.
  • Friederici, L., E. Schneider, G. Burnens, T. Streibel, P. Giusti, C. P. Rüger, and R. Zimmermann. 2021. Comprehensive chemical description of pyrolysis chars from low-density polyethylene by thermal analysis hyphenated to different mass spectrometric approaches. Energy Fuels 35 (22):18185–93. doi:10.1021/acs.energyfuels.1c01994.
  • Galebach, P. H., M. Beussman, J. Johnson, T. Fredriksen, C. Wang, M. P. Lanci, and G. W. Huber. 2021. Catalytic conversion of pyrolysis oil to alcohols and alkanes in supercritical methanol over the CuMgAlO xCatalyst. ACS Sustain. Chem. Eng. 9 (5):2067–79. doi:10.1021/acssuschemeng.0c07020.
  • Hertzog, J., C. Mase, M. Hubert-Roux, C. Afonso, P. Giusti, and C. Barrère-Mangote. 2021. Characterization of heavy products from Lignocellulosic biomass pyrolysis by chromatography and fourier transform mass spectrometry: A review. Energy Fuels 35 (22):17979–8007. doi:10.1021/acs.energyfuels.1c02098.
  • Hertzog, J., V. Carré, and F. Aubriet. 2019. Contribution of Fourier transform mass spectrometry to bio-oil study. In Fundamentals and applications of Fourier Transform mass spectrometry, ed. S.-K. Philippe and B. Kanawati, 679–733. Amsterdam, Netherlands: Elsevier.
  • Hettiyadura, A. P. S., V. Garcia, C. Li, C. P. C. P. West, J. Tomlin, Q. He, Y. Rudich, and A. Laskin. 2021. Chemical composition and molecular-specific optical properties of atmospheric brown carbon associated with biomass burning. Environ. Sci. Technol. 55 (4):2511–21. doi:10.1021/acs.est.0c05883.
  • Huang, Y., S. Kudo, O. Masek, K. Norinaga, and J. I. Hayashi. 2013. Simultaneous maximization of the char yield and volatility of oil from biomass pyrolysis. Energy Fuels 27 (1):247–54. doi:10.1021/ef301366x.
  • Huber, G. W., S. Iborra, and A. Corma. 2006. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106 (9):4044–98. doi:10.1021/cr068360d.
  • Hughey, C. A., C. L. Hendrickson, R. P. Rodgers, A. G. Marshall, and K. Qian. 2001. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73 (19):4676–81. doi:10.1021/ac010560w.
  • Iaccarino, A., R. Gautam, and S. M. Sarathy. 2021. Bio-oil and biochar production from halophyte biomass: Effects of pre-treatment and temperature onSalicornia bigeloviipyrolysis. Sustain. Energy Fuels 5 (8):2234–48. doi:10.1039/D0SE01664K.
  • Jaitly, N., A. Mayampurath, K. Littlefield, J. N. Adkins, G. A. Anderson, and R. D. Smith. 2009. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinformatics 10 (1):87. doi:10.1186/1471-2105-10-87.
  • Jarvis, J. M., A. M. McKenna, R. N. Hilten, K. C. Das, R. P. Rodgers, and A. G. Marshall. 2012. Characterization of pine pellet and peanut hull pyrolysis bio-oils by negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 26 (6):3810–5. doi:10.1021/ef300385f.
  • Jones, S. B., C. Valkenburt, C. W. Walton, D. C. Elliott, J. E. Holladay, D. J. Stevens, C. Kinchin, and S. Czernik. 2009. Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: A design case. Report prepared for the United States Department of Energy, PNNL-18284, Pacific Northwest National Laboratory Richland, Washington.
  • Joseph, J., M. J. Rasmussen, J. P. Fecteau, S. Kim, H. Lee, K. A. Tracy, B. L. Jensen, B. G. Frederick, and E. A. Stemmler. 2016. Compositional changes to low water content bio-oils during aging: An NMR, GC/MS, and LC/MS study. Energy Fuels 30 (6):4825–40. doi:10.1021/acs.energyfuels.6b00238.
  • Kawamoto, H. 2017. Lignin pyrolysis reactions. J. Wood Sci. 63 (2):117–32. doi:10.1007/s10086-016-1606-z.
  • Kostyukevich, Y., M. Vlaskin, A. Zherebker, A. Grigorenko, L. Borisova, and E. Nikolaev. 2019. High-resolution mass spectrometry study of the bio-oil samples produced by thermal liquefaction of microalgae in different solvents. J. Am. Soc. Mass Spectrom. 30 (4):605–14. doi:10.1007/s13361-018-02128-9.
  • Kostyukevich, Y., M. Vlaskin, L. Borisova, A. Zherebker, I. Perminova, A. Kononikhin, I. Popov, and E. Nikolaev. 2018. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Eur. J. Mass Spectrom. (Chichester) 24 (1):116–23. doi:10.1177/1469066717737904.
  • Kroll, J. H., N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, et al. 2011. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 3 (2):133–9. doi:10.1038/nchem.948.
  • Lex, A., N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. 2014. UpSet: Visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20 (12):1983–92. doi:10.1109/TVCG.2014.2346248.
  • Li, H., Y. Wang, N. Zhou, L. Dai, W. Deng, C. Liu, Y. Cheng, Y. Liu, K. Cobb, P. Chen, et al. 2021. Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification – A review. J. Clean. Prod. 291:125826. doi:10.1016/j.jclepro.2021.125826.
  • Li, Y., D. A. Day, H. Stark, J. L. Jimenez, and M. Shiraiwa. 2020. Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions. Atmos. Chem. Phys. 20 (13):8103–22. doi:10.5194/acp-20-8103-2020.
  • Li, Y., U. Pöschl, and M. Shiraiwa. 2016. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmos. Chem. Phys. 16 (5):3327–44. doi:10.5194/acp-16-3327-2016.
  • Lin, P., L. T. Fleming, S. A. Nizkorodov, J. Laskin, and A. Laskin. 2018. Comprehensive molecular characterization of atmospheric brown carbon by high resolution mass spectrometry with electrospray and atmospheric pressure photoionization. Anal. Chem. 90 (21):12493–502. doi:10.1021/acs.analchem.8b02177.
  • Lindfors, C., E. Kuoppala, A. Oasmaa, Y. Solantausta, and V. Arpiainen. 2014. Fractionation of bio-oil. Energy Fuels 28 (9):5785–91. doi:10.1021/ef500754d.
  • Lobodin, V. V., C. S. Hsu, and A. G. Marshall. 2012. Compositional space boundaries for organic compounds. Anal. Chem. 84 (7):3410–6. doi:10.1021/ac300244f.
  • Marple, V. A., K. L. Rubow, and S. M. Behm. 1991. A microorifice uniform deposit impactor (MOUDI): Description, calibration, and use. Aerosol Sci. Technol. 14 (4):434–46. doi:10.1080/02786829108959504.
  • Mase, C., M. Hubert-Roux, C. Afonso, and P. Giusti. 2022. Contribution of atmospheric pressure chemical ionization mass spectrometry for the characterization of bio-oils from lignocellulosic biomass: Comparison with electrospray ionization and atmospheric pressure photoionization. J. Anal. Appl. Pyrolysis 167:105694. doi:10.1016/j.jaap.2022.105694.
  • McClelland, D. J., A. H. Motagamwala, Y. Li, M. R. Rover, A. M. Wittrig, C. Wu, J. S. Buchanan, R. C. Brown, J. Ralph, J. A. Dumesic, et al. 2017. Functionality and molecular weight distribution of red oak lignin before and after pyrolysis and hydrogenation. Green Chem. 19 (5):1378–89. doi:10.1039/C6GC03515A.
  • Meija, J. 2006. Mathematical tools in analytical mass spectrometry. Anal. Bioanal. Chem. 385 (3):486–99. doi:10.1007/s00216-006-0298-4.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20 (3):848–89. doi:10.1021/ef0502397.
  • Mortensen, P. M., J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407 (1–2):1–19. doi:10.1016/j.apcata.2011.08.046.
  • Nanduri, A., S. S. Kulkarni, and P. L. Mills. 2021. Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review. Renew. Sustain. Energy Rev. 148:111262. doi:10.1016/j.rser.2021.111262.
  • Nolte, M. W., and M. W. Liberatore. 2010. Viscosity of biomass pyrolysis oils from various feedstocks. Energy Fuels 24 (12):6601–8. doi:10.1021/ef101173r.
  • Oasmaa, A., and C. Peacocke. 2010. Properties and fuel use of biomass-derived fast pyrolysis liquids. A guide. Espoo: Vtt Publications.
  • Oasmaa, A., and E. Kuoppala. 2003. Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy Fuels 17 (4):1075–84. doi:10.1021/ef030011o.
  • Oasmaa, A., I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. Garcia-Perez. 2016. Pyrolysis oil multiphase behavior and phase stability: A review. Energy Fuels 30 (8):6179–200. doi:10.1021/acs.energyfuels.6b01287.
  • Oginni, O., and K. Singh Tingi. 2021. Temperature-dependent viscosity of bio-oil derived from white pine and Norway spruce needles. Biofuels. Bioprod. Bioref. 15 (5):1520–5. doi:10.1002/bbb.2257.
  • Palacio Lozano, D. C., H. E. Jones, R. Gavard, M. J. Thomas, C. X. Ramírez, C. A. Wootton, J. A. Sarmiento Chaparro, P. B. O'Connor, S. E. F. Spencer, D. Rossell, et al. 2022. Revealing the reactivity of individual chemical entities in complex mixtures: The chemistry behind bio-oil upgrading. Anal. Chem. 94 (21):7536–44. doi:10.1021/acs.analchem.2c00261.
  • Palacio Lozano, D. C., H. E. Jones, T. Ramirez Reina, R. Volpe, and M. P. Barrow. 2021. Unlocking the potential of biofuels: Via reaction pathways in van Krevelen diagrams. Green Chem. 23 (22):8949–63. doi:10.1039/D1GC01796A.
  • Pellegrin, V. 1983. Molecular formulas of organic compounds. J. Chem. Educ. 60 (8):626–33. doi:10.1021/ed060p626.
  • Pinheiro Pires, A. P., J. Arauzo, I. Fonts, M. E. Domine, A. Fernández Arroyo, M. E. Garcia-Perez, J. Montoya, F. Chejne, P. Pfromm, and M. Garcia-Perez. 2019. Challenges and opportunities for bio-oil refining: A review. Energy Fuels 33 (6):4683–720. doi:10.1021/acs.energyfuels.9b00039.
  • Qi, Y., P. Fu, and D. A. Volmer. 2022. Analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry: An overview of recent non-petroleum applications. Mass Spectrom. Rev. 41 (5):647–61. doi:10.1002/mas.21634.
  • Qi, Y., P. Fu, S. Li, C. Ma, C. Liu, and D. A. Volmer. 2020. Assessment of molecular diversity of lignin products by various ionization techniques and high-resolution mass spectrometry. Sci. Total Environ. 713:136573. doi:10.1016/j.scitotenv.2020.136573.
  • Qian, K. 2021. Molecular characterization of heavy petroleum by mass spectrometry and related techniques. Energy Fuels 35 (22):18008–18. doi:10.1021/acs.energyfuels.1c01783.
  • Reymond, C., A. Dubuis, A. Le Masle, C. Colas, L. Chahen, E. Destandau, and N. Charon. 2020. Characterization of liquid–liquid extraction fractions from lignocellulosic biomass by high performance liquid chromatography hyphenated to tandem high-resolution mass spectrometry. J. Chromatogr. A 1610:460569. doi:10.1016/j.chroma.2019.460569.
  • Roach, P. J., J. Laskin, and A. Laskin. 2011. Higher-order mass defect analysis for mass spectra of complex organic mixtures. Anal. Chem. 83 (12):4924–9. doi:10.1021/ac200654j.
  • Rodgers, R. P., M. M. Mapolelo, W. K. Robbins, M. L. Chacón, C. Chacón-Patiño, P. Patiño, J. C. Putman, S. F. Niles, S. M. Rowland Ab, A. G. Marshall, et al. 2019. Combating selective ionization in the high resolution mass spectral characterization of complex mixtures. Faraday Discuss. 218:29–51. doi:10.1039/c9fd00005d.
  • Rogers, R. P., and A. G. Marshall. 2007. Petroleomics: Advanced characterization of petroleum-derived materials by Fourier transform ioncyclotron resonance mass spectrometry (FT-ICR MS). In Asphaltenes, heavy oils, and petroleomics, 63–89. New York: Springer.
  • Romão, W., L. V. Tose, B. G. Vaz, S. G. Sama, R. Lobinski, P. Giusti, H. Carrier, and B. Bouyssiere. 2016. Petroleomics by direct analysis in real time-mass spectrometry. J. Am. Soc. Mass Spectrom. 27 (1):182–5. doi:10.1007/s13361-015-1266-z.
  • Routray, K., K. J. Barnett, and G. W. Huber. 2017. Hydrodeoxygenation of pyrolysis oils. Energy Technol. 5 (1):80–93. doi:10.1002/ente.201600084.
  • Rüger, C. P., O. Tiemann, A. Neumann, T. Streibel, and R. Zimmermann. 2021. Review on evolved gas analysis mass spectrometry with soft photoionization for the chemical description of petroleum, petroleum-derived materials, and alternative feedstocks. Energy Fuels 35 (22):18308–32. doi:10.1021/acs.energyfuels.1c02720.
  • Scott, D. S., and J. Piskorz. 1982. The flash pyrolysis of aspen‐poplar wood. Can. J. Chem. Eng. 60 (5):666–74. doi:10.1002/cjce.5450600514.
  • Sharp, J. R., D. N. Grace, S. Ma, J. L. Woo, and M. M. Galloway. 2021. Competing photochemical effects in aqueous carbonyl/ammonium brown carbon systems. ACS Earth Space Chem. 5 (8):1902–15. doi:10.1021/acsearthspacechem.1c00165.
  • Smith, E. A., and Y. J. Lee. 2010. Petroleomic analysis of bio-oils from the fast pyrolysis of biomass: Laser desorption ionization-linear ion trap-orbitrap mass spectrometry approach. Energy Fuels 24 (9):5190–8. doi:10.1021/ef100629a.
  • Smith, E. A., S. Park, A. T. Klein, and Y. J. Lee. 2012. Bio-oil analysis using negative electrospray ionization: Comparative study of high-resolution mass spectrometers and phenolic versus sugaric components. Energy Fuels 26 (6):3796–802. doi:10.1021/ef3003558.
  • Speight, J. G. 2007. Distillation. Vol. 114 of The chemistry and technology of petroleum, Chemical Industries, 459–79. Boca Raton: CRC Press/Taylor & Francis.
  • Stankovikj, F., A. G. McDonald, G. L. Helms, and M. Garcia-Perez. 2016. Quantification of bio-oil functional groups and evidences of the presence of pyrolytic humins. Energy Fuels 30 (8):6505–24. doi:10.1021/acs.energyfuels.6b01242.
  • Staš, M., D. Kubička, J. Chudoba, and M. Pospíšil. 2014. Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy Fuels 28 (1):385–402. doi:10.1021/ef402047y.
  • Staš, M., J. Chudoba, D. Kubička, J. Blažek, and M. Pospíšil. 2017b. Petroleomic characterization of pyrolysis bio-oils: A review. Energy Fuels 31 (10):10283–99. doi:10.1021/acs.energyfuels.7b00826.
  • Staš, M., J. Chudoba, M. Auersvald, D. Kubička, S. Conrad, T. Schulzke, and M. Pospíšil. 2017a. Application of orbitrap mass spectrometry for analysis of model bio-oil compounds and fast pyrolysis bio-oils from different biomass sources. J. Anal. Appl. Pyrolysis 124:230–8. doi:10.1016/j.jaap.2017.02.002.
  • Wang, G., Y. Dai, H. Yang, Q. Xiong, K. Wang, J. Zhou, Y. Li, and S. Wang. 2020. A review of recent advances in biomass pyrolysis. Energy Fuels 34 (12):15557–78. doi:10.1021/acs.energyfuels.0c03107.
  • Wang, Y., Y. Han, W. Hu, D. Fu, and G. Wang. 2020. Analytical strategies for chemical characterization of bio-oil. J. Sep. Sci. 43 (1):360–71. doi:10.1002/jssc.201901014.
  • Ware, R. L., R. P. Rodgers, A. G. Marshall, O. D. Mante, D. C. Dayton, S. Verdier, J. Gabrielsen, and S. M. Rowland. 2020. Detailed chemical composition of an oak biocrude and its hydrotreated product determined by positive atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Sustain. Energy Fuels 4 (5):2404–10. doi:10.1039/C9SE00837C.
  • Ware, R. L., R. P. Rodgers, A. G. Marshall, O. D. Mante, D. C. Dayton, S. Verdier, J. Gabrielsen, and S. M. Rowland. 2020. Tracking elemental composition through hydrotreatment of an upgraded pyrolysis oil blended with a light gas oil. Energy Fuels 34 (12):16181–6. doi:10.1021/acs.energyfuels.0c02437.
  • West, C. P., Hettiyadura, A. P. S., Darmody A. Mahamuni, G. Davis, J. Novosselov, I, and Laskin, A. 2020. Molecular composition and the optical properties of brown carbon generated by the ethane flame. ACS Earth Space Chem. 4 (7):1090–103. doi:10.1021/acsearthspacechem.0c00095.
  • Xue, Y., S. Zhou, and X. Bai. 2016. Role of Hydrogen transfer during catalytic copyrolysis of lignin and tetralin over HZSM-5 and HY zeolite catalysts. ACS Sustain. Chem. Eng. 4 (8):4237–50. doi:10.1021/acssuschemeng.6b00733.
  • Yang, L. H., M. Takeuchi, Y. Chen, and N. L. Ng. 2021. Characterization of thermal decomposition of oxygenated organic compounds in FIGAERO-CIMS. Aerosol Sci. Technol. 55 (12):1321–42. doi:10.1080/02786826.2021.1945529.
  • Younis, M. R., M. Farooq, M. Imran, A. H. Kazim, and A. Shabbir. 2021. Characterization of the viscosity of bio-oil produced by fast pyrolysis of the wheat straw. Energy Sources, Part A 43 (15):1853–68. doi:10.1080/15567036.2019.1666181.
  • Zhang, Q., J. Chang, T. Wang, and Y. Xu. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 48 (1):87–92. doi:10.1016/j.enconman.2006.05.010.
  • Zhang, Y., K. Wang, H. Tong, R. J. Huang, and T. Hoffmann. 2021. The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components. Rapid Commun. Mass Spectrom. 35 (14):e9113. doi:10.1002/rcm.9113.
  • Zhou, Z., X. Chen, H. Ma, C. Liu, C. Zhou, and F. Qi. 2019. Real-time monitoring biomass pyrolysis via on-line photoionization ultrahigh-resolution mass spectrometry. Fuel 235:962–71. doi:10.1016/j.fuel.2018.08.098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.