1,307
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effects of volatility, viscosity, and non-ideality on particle–particle mixing timescales of secondary organic aerosols

ORCID Icon, ORCID Icon & ORCID Icon
Pages 411-426 | Received 30 Jul 2023, Accepted 30 Aug 2023, Published online: 26 Sep 2023

References

  • Bateman, A. P., A. K. Bertram, and S. T. Martin. 2015. Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials. J. Phys. Chem. A 119 (19):4386–4395. doi: 10.1021/jp508521c.
  • Berkemeier, T., M. Shiraiwa, U. Pöschl, and T. Koop. 2014. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. 14 (22):12513–12531. doi: 10.5194/acp-14-12513-2014.
  • Bertozzi, B., R. Wagner, J. Song, K. Höhler, J. Pfeifer, H. Saathoff, T. Leisner, and O. Möhler. 2021. Ice nucleation ability of ammonium sulfate aerosol particles internally mixed with secondary organics. Atmos. Chem. Phys. 21 (13):10779–10798. doi: 10.5194/acp-21-10779-2021.
  • Booth, A. M., B. Murphy, I. Riipinen, C. J. Percival, and D. O. Topping. 2014. Connecting bulk viscosity measurements to kinetic limitations on attaining equilibrium for a model aerosol composition. Environ. Sci. Technol. 48 (16):9298–9305. doi: 10.1021/es501705c.
  • Brown, H., X. Liu, R. Pokhrel, S. Murphy, Z. Lu, R. Saleh, T. Mielonen, H. Kokkola, T. Bergman, G. Myhre, et al. 2021. Biomass burning aerosols in most climate models are too absorbing. Nat. Commun. 12 (1):277. doi: 10.1038/s41467-020-20482-9.
  • Cappa, C. D., T. B. Onasch, P. Massoli, D. R. Worsnop, T. S. Bates, E. S. Cross, P. Davidovits, J. Hakala, K. L. Hayden, B. T. Jobson, et al. 2012. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337 (6098):1078–1081. doi: 10.1126/science.1223447.
  • Cummings, B. E., A. M. Avery, P. F. DeCarlo, and M. S. Waring. 2021. Improving predictions of indoor aerosol concentrations of outdoor origin by considering the phase change of semivolatile material driven by temperature and mass-loading gradients. Environ. Sci. Technol. 55 (13):9000–9011. doi: 10.1021/acs.est.1c00417.
  • Domaros, M., P. S. J. von Lakey, M. Shiraiwa, and D. J. Tobias. 2020. Multiscale modeling of human skin oil-induced indoor air chemistry: Combining kinetic models and molecular dynamics. J. Phys. Chem. B 124 (18):3836–3843. doi: 10.1021/acs.jpcb.0c02818.
  • Donahue, N. M., W. Chuang, and M. Schervish. 2019. Gas-phase organic oxidation chemistry and atmospheric particles. In Advances in atmospheric chemistry, Vol. 2, 199–317. New Jersey: World Scientific. doi: 10.1142/9789813271838_0004.
  • Donahue, N. M., S. A. Epstein, S. N. Pandis, and A. L. Robinson. 2011. A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 11 (7):3303–3318. doi: 10.5194/acp-11-3303-2011.
  • Erdakos, G. B., W. E. Asher, J. H. Seinfeld, and J. F. Pankow. 2006. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 1: Organic compounds and water by consideration of short- and long-range effects using X-UNIFAC.1. Atmos. Environ. 40 (33):6410–6421. doi: 10.1016/j.atmosenv.2006.04.030.
  • Evoy, E., K. J. Kiland, Y. Huang, E. G. Schnitzler, A. M. Maclean, S. Kamal, J. P. D. Abbatt, and A. K. Bertram. 2021. Diffusion coefficients and mixing times of organic molecules in β-caryophyllene secondary organic aerosol (SOA) and biomass burning organic aerosol (BBOA). ACS Earth Space Chem. 5 (11):3268–3278. doi: 10.1021/acsearthspacechem.1c00317.
  • Freedman, M. A. 2017. Phase separation in organic aerosol. Chem. Soc. Rev. 46 (24):7694–7705. doi: 10.1039/C6CS00783J.
  • Freedman, M. A. 2020. Liquid–liquid phase separation in supermicrometer and submicrometer aerosol particles. Acc. Chem. Res. 53 (6):1102–1110. doi: 10.1021/acs.accounts.0c00093.
  • Gkatzelis, G. I., D. K. Papanastasiou, V. A. Karydis, T. Hohaus, Y. Liu, S. H. Schmitt, P. Schlag, H. Fuchs, A. Novelli, Q. Chen, et al. 2021. Uptake of water-soluble gas-phase oxidation products drives organic particulate pollution in Beijing. Geophys. Res. Lett. 48 (8):e2020GL091351. doi: 10.1029/2020GL091351.
  • Goldstein, A. H., and I. E. Galbally. 2007. Known and unknown organic constituents in the earth’ s atmosphere. Environ. Sci. Technol. 41 (5):1514–1521. doi: 10.1021/es072476p.
  • Grayson, J. W., Y. Zhang, A. Mutzel, L. Renbaum-Wolff, O. Böge, S. Kamal, H. Herrmann, S. T. Martin, and A. K. Bertram. 2016. Effect of varying experimental conditions on the viscosity of α-pinene derived secondary organic material. Atmos. Chem. Phys. 16 (10):6027–6040. doi: 10.5194/acp-16-6027-2016.
  • Habib, L., and N. Donahue. 2022. Single particle measurements of mixing between mimics for biomass burning and aged secondary organic aerosols. Environ. Sci: Atmos. 2 (4):727–737. doi: 10.1039/D2EA00017B.
  • He, Y., A. Akherati, T. Nah, N. L. Ng, L. A. Garofalo, D. K. Farmer, M. Shiraiwa, R. A. Zaveri, C. D. Cappa, J. R. Pierce, et al. 2021. Particle size distribution dynamics can help constrain the phase state of secondary organic aerosol. Environ. Sci. Technol. 55 (3):1466–1476. doi: 10.1021/acs.est.0c05796.
  • Hilditch, T. G., D. A. Hardy, N. J. Stevens, P. B. Glover, and J. P. Reid. 2023. Single-particle measurements and estimations of activity coefficients for semi-volatile organic compounds in organic aerosol of known chemical speciation. Environ. Sci: Atmos. 3 (5):931–941. doi: 10.1039/D2EA00180B.
  • Hinks, M. L., M. V. Brady, H. Lignell, M. Song, J. W. Grayson, A. K. Bertram, P. Lin, A. Laskin, J. Laskin, and S. A. Nizkorodov. 2016. Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Phys. Chem. Chem. Phys. 18 (13):8785–8793. doi: 10.1039/C5CP05226B.
  • Hodzic, A., P. Campuzano-Jost, H. Bian, M. Chin, P. R. Colarco, D. A. Day, K. D. Froyd, B. Heinold, D. S. Jo, J. M. Katich, et al. 2020. Characterization of organic aerosol across the global remote troposphere: A comparison of atom measurements and global chemistry models. Atmos. Chem. Phys. 20 (8):4607–4635. doi: 10.5194/acp-20-4607-2020.
  • Huang, Y., F. Mahrt, S. Xu, M. Shiraiwa, A. Zuend, and A. K. Bertram. 2021. Coexistence of three liquid phases in individual atmospheric aerosol particles. Proc. Natl. Acad. Sci. USA. 118 (16):e2102512118. doi: 10.1073/pnas.2102512118.
  • Hyttinen, N., R. Heshmatnezhad, J. Elm, T. Kurtén, and N. L. Prisle. 2020. Technical note: Estimating aqueous solubilities and activity coefficients of mono- and α,ω-dicarboxylic acids using COSMOTherm. Atmos. Chem. Phys. 20 (21):13131–13143. doi: 10.5194/acp-20-13131-2020.
  • Jahl, L. G., T. A. Brubaker, M. J. Polen, L. G. Jahn, K. P. Cain, B. B. Bowers, W. D. Fahy, S. Graves, and R. C. Sullivan. 2021. Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol. Sci. Adv. 7 (9):eabd3440. doi: 10.1126/sciadv.abd3440.
  • Jeong, R., J. Lilek, A. Zuend, R. Xu, M. N. Chan, D. Kim, H. G. Moon, and M. Song. 2022. Viscosity and physical state of sucrose mixed with ammonium sulfate droplets. Atmos. Chem. Phys. 22 (13):8805–8817. doi: 10.5194/acp-22-8805-2022.
  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–1529. doi: 10.1126/science.1180353.
  • Julin, J., P. M. Winkler, N. M. Donahue, P. E. Wagner, and I. Riipinen. 2014. Near-unity mass accommodation coefficient of organic molecules of varying structure. Environ. Sci. Technol. 48 (20):12083–12089. doi: 10.1021/es501816h.
  • Kasparoglu, S., Y. Li, M. Shiraiwa, and M. D. Petters. 2021. Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity. Atmos. Chem. Phys. 21 (2):1127–1141. doi: 10.5194/acp-21-1127-2021.
  • Kaur Kohli, R., S. Salas, B. Shokoor, C. L. Price, and J. F. Davies. 2023. Chemically resolved evaporation dynamics of dicarboxylic acid mixtures in solid particles. Anal. Chem. 95 (31):11831–11838. doi: 10.1021/acs.analchem.3c02475.
  • Kiland, K. J., A. M. Maclean, S. Kamal, and A. K. Bertram. 2019. Diffusion of organic molecules as a function of temperature in a sucrose matrix (a proxy for secondary organic aerosol). J. Phys. Chem. Lett. 10 (19):5902–5908. doi: 10.1021/acs.jpclett.9b02182.
  • Kim, Y., K. Sartelet, and F. Couvidat. 2019. Modeling the effect of non-ideality, dynamic mass transfer and viscosity on SOA formation in a 3-D air quality model. Atmos. Chem. Phys. 19 (2):1241–1261. doi: 10.5194/acp-19-1241-2019.
  • Lei, Z., N. E. Olson, Y. Zhang, Y. Chen, A. T. Lambe, J. Zhang, N. J. White, J. M. Atkin, M. M. Banaszak Holl, Z. Zhang, et al. 2022. Morphology and viscosity changes after reactive uptake of isoprene epoxydiols in submicrometer phase separated particles with secondary organic aerosol formed from different volatile organic compounds. ACS Earth Space Chem. 6 (4):871–882. doi: 10.1021/acsearthspacechem.1c00156.
  • Li, W., L. Liu, J. Zhang, L. Xu, Y. Wang, Y. Sun, and Z. Shi. 2021. Microscopic evidence for phase separation of organic species and inorganic salts in fine ambient aerosol particles. Environ. Sci. Technol. 55 (4):2234–2242. doi: 10.1021/acs.est.0c02333.
  • Li, Y., and M. Shiraiwa. 2019. Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmos. Chem. Phys. 19 (9):5959–5971. doi: 10.5194/acp-19-5959-2019.
  • Li, Y. J., P. Liu, Z. Gong, Y. Wang, A. P. Bateman, C. Bergoend, A. K. Bertram, and S. T. Martin. 2015. Chemical reactivity and liquid/nonliquid states of secondary organic material. Environ. Sci. Technol. 49 (22):13264–13274. doi: 10.1021/acs.est.5b03392.
  • Liu, P., Y. J. Li, Y. Wang, M. K. Gilles, R. A. Zaveri, A. K. Bertram, and S. T. Martin. 2016. Lability of secondary organic particulate matter. Proc. Natl. Acad. Sci. USA 113 (45):12643–12648. doi: 10.1073/pnas.1603138113.
  • Liu, X., L. G. Huey, R. J. Yokelson, V. Selimovic, I. J. Simpson, M. Müller, J. L. Jimenez, P. Campuzano‐Jost, A. J. Beyersdorf, D. R. Blake, et al. 2017. Airborne measurements of Western U.S. wildfire emissions: comparison with prescribed burning and air quality implications. JGR. Atmospheres 122 (11):6108–6129. doi: 10.1002/2016JD026315.
  • Liu, Y., Z. Wu, Y. Wang, Y. Xiao, F. Gu, J. Zheng, T. Tan, D. Shang, Y. Wu, L. Zeng, et al. 2017. Submicrometer particles are in the liquid state during heavy haze episodes in the urban atmosphere of Beijing, China. Environ. Sci. Technol. Lett. 4 (10):427–432. doi: 10.1021/acs.estlett.7b00352.
  • Maclean, A. M., N. R. Smith, Y. Li, Y. Huang, A. P. S. Hettiyadura, G. V. Crescenzo, M. Shiraiwa, A. Laskin, S. A. Nizkorodov, and A. K. Bertram. 2021. Humidity-dependent viscosity of secondary organic aerosol from ozonolysis of β-caryophyllene: measurements, predictions, and implications. ACS Earth Space Chem. 5 (2):305–318. doi: 10.1021/acsearthspacechem.0c00296.
  • Mahrt, F., L. Peng, J. Zaks, Y. Huang, P. E. Ohno, N. R. Smith, F. K. A. Gregson, Y. Qin, C. L. Faiola, S. T. Martin, et al. 2022. Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types. Atmos. Chem. Phys. 22 (20):13783–13796. doi: 10.5194/acp-22-13783-2022.
  • Mai, H., M. Shiraiwa, R. C. Flagan, and J. H. Seinfeld. 2015. Under what conditions can equilibrium gas–particle partitioning be expected to hold in the atmosphere? Environ. Sci. Technol. 49 (19):11485–11491. doi: 10.1021/acs.est.5b02587.
  • Marcolli, C., B. P. Luo, T. Peter, and F. G. Wienhold. 2004. Internal mixing of the organic aerosol by gas phase diffusion of semivolatile organic compounds. Atmos. Chem. Phys. 4 (11/12):2593–2599. doi: 10.5194/acp-4-2593-2004.
  • Martin, S. T., M. O. Andreae, D. Althausen, P. Artaxo, H. Baars, S. Borrmann, Q. Chen, D. K. Farmer, A. Guenther, S. S. Gunthe, et al. 2010. An overview of the Amazonian aerosol characterization experiment 2008 (AMAZE-08). Atmos. Chem. Phys. 10 (23):11415–11438. doi: 10.5194/acp-10-11415-2010.
  • Mu, Q., M. Shiraiwa, M. Octaviani, N. Ma, A. Ding, H. Su, G. Lammel, U. Pöschl, and Y. Cheng. 2018. Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs. Sci. Adv. 4 (3):eaap7314. doi: 10.1126/sciadv.aap7314.
  • Octaviani, M., M. Shrivastava, R. A. Zaveri, A. Zelenyuk, Y. Zhang, Q. Z. Rasool, D. M. Bell, M. Riva, M. Glasius, and J. D. Surratt. 2021. Modeling the size distribution and chemical composition of secondary organic aerosols during the reactive uptake of isoprene-derived epoxydiols under low-humidity condition. ACS Earth Space Chem. 5 (11):3247–3257. doi: 10.1021/acsearthspacechem.1c00303.
  • O'Meara, S., D. O. Topping, and G. McFiggans. 2016. The rate of equilibration of viscous aerosol particles. Atmos. Chem. Phys. 16 (8):5299–5313. doi: 10.5194/acp-16-5299-2016.
  • Petters, S. S., S. M. Kreidenweis, A. P. Grieshop, P. J. Ziemann, and M. D. Petters. 2019. Temperature- and humidity-dependent phase states of secondary organic aerosols. Geophys. Res. Lett. 46 (2):1005–1013. doi: 10.1029/2018GL080563.
  • Philip, S., R. V. Martin, and C. A. Keller. 2016. Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: A case study with GEOS-Chem V10-01. Geosci. Model Dev. 9 (5):1683–1695. doi: 10.5194/gmd-9-1683-2016.
  • Pöschl, U., S. T. Martin, B. Sinha, Q. Chen, S. S. Gunthe, J. A. Huffman, S. Borrmann, D. K. Farmer, R. M. Garland, G. Helas, et al. 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329 (5998):1513–1516. doi: 10.1126/science.1191056.
  • Pöschl, U., and M. Shiraiwa. 2015. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem. Rev. 115 (10):4440–4475. doi: 10.1021/cr500487s.
  • Prather, K. A., C. D. Hatch, and V. H. Grassian. 2008. Analysis of atmospheric aerosols. Annu Rev Anal Chem (Palo Alto Calif) 1 (1):485–514. doi: 10.1146/annurev.anchem.1.031207.113030.
  • Preston, T. C., and A. Zuend. 2022. Equilibration times in viscous and viscoelastic aerosol particles. Environ. Sci: Atmos. 2 (6):1376–1388. doi: 10.1039/D2EA00065B.
  • Price, H. C., J. Mattsson, Y. Zhang, A. K. Bertram, J. F. Davies, J. W. Grayson, S. T. Martin, D. O'Sullivan, J. P. Reid, A. M. J. Rickards, et al. 2015. Water diffusion in atmospherically relevant α-pinene secondary organic material. Chem. Sci. 6 (8):4876–4883. doi: 10.1039/C5SC00685F.
  • Rasool, Q. Z., M. Shrivastava, Y. Liu, B. Gaudet, and B. Zhao. 2023. Modeling the impact of the organic aerosol phase state on multiphase oh reactive uptake kinetics and the resultant heterogeneous oxidation timescale of organic aerosol in the Amazon rainforest. ACS Earth Space Chem. 7 (5):1009–1024. doi: 10.1021/acsearthspacechem.2c00366.
  • Rasool, Q. Z., M. Shrivastava, M. Octaviani, B. Zhao, B. Gaudet, and Y. Liu. 2021. Modeling volatility-based aerosol phase state predictions in the Amazon rainforest. ACS Earth Space Chem. 5 (10):2910–2924. doi: 10.1021/acsearthspacechem.1c00255.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9 (1):956. doi: 10.1038/s41467-018-03027-z.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi: 10.1029/2018RG000615.
  • Riipinen, I., J. R. Pierce, T. Yli-Juuti, T. Nieminen, S. Häkkinen, M. Ehn, H. Junninen, K. Lehtipalo, T. Petäjä, J. Slowik, et al. 2011. Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (ccn) concentrations. Atmos. Chem. Phys. 11 (8):3865–3878. doi: 10.5194/acp-11-3865-2011.
  • Robinson, E. S., R. Saleh, and N. M. Donahue. 2013. Organic aerosol mixing observed by single-particle mass spectrometry. J. Phys. Chem. A 117 (51):13935–13945. doi: 10.1021/jp405789t.
  • Roston, D. 2021. Molecular dynamics simulations demonstrate that non-ideal mixing dominates subsaturation organic aerosol hygroscopicity. Phys. Chem. Chem. Phys. 23 (15):9218–9227. doi: 10.1039/D1CP00245G.
  • Rusumdar, A. J., A. Tilgner, R. Wolke, and H. Herrmann. 2020. Treatment of non-ideality in the SPACCIM multiphase model – Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles. Atmos. Chem. Phys. 20 (17):10351–10377. doi: 10.5194/acp-20-10351-2020.
  • Saleh, R., N. M. Donahue, and A. L. Robinson. 2013. Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. Environ. Sci. Technol. 47 (11):5588–5594. doi: 10.1021/es400078d.
  • Schervish, M., and M. Shiraiwa. 2023. Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning. Atmos. Chem. Phys. 23 (1):221–233. doi: 10.5194/acp-23-221-2023.
  • Schmedding, R., Q. Z. Rasool, Y. Zhang, H. O. T. Pye, H. Zhang, Y. Chen, J. D. Surratt, F. D. Lopez-Hilfiker, J. A. Thornton, A. H. Goldstein, et al. 2020. Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. Atmos. Chem. Phys. 20 (12):8201–8225. doi: 10.5194/acp-20-8201-2020.
  • Sedlacek, A. J. I., E. R. Lewis, T. B. Onasch, P. Zuidema, J. Redemann, D. Jaffe, and L. I. Kleinman. 2022. Using the black carbon particle mixing state to characterize the lifecycle of biomass burning aerosols. Environ. Sci. Technol. 56 (20):14315–14325. doi: 10.1021/acs.est.2c03851.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: from air pollution to climate change. 3rd ed. New York: Wiley. https://www.wiley.com/en-us/Atmospheric+Chemistry+and+Physics:+From+Air+Pollution+to+Climate+Change,+3rd+Edition-p-9781118947401.
  • Shen, C., W. Zhang, J. Choczynski, J. F. Davies, and H. Zhang. 2022. Phase state and relative humidity regulate the heterogeneous oxidation kinetics and pathways of organic-inorganic mixed aerosols. Environ. Sci. Technol. 56 (22):15398–15407. doi: 10.1021/acs.est.2c04670.
  • Shiraiwa, M., M. Ammann, T. Koop, and U. Pöschl. 2011. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA 108 (27):11003–11008. doi: 10.1073/pnas.1103045108.
  • Shiraiwa, M., Y. Li, A. P. Tsimpidi, V. A. Karydis, T. Berkemeier, S. N. Pandis, J. Lelieveld, T. Koop, and U. Pöschl. 2017. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8 (1):15002. doi: 10.1038/ncomms15002.
  • Shiraiwa, M., C. Pfrang, T. Koop, and U. Pöschl. 2012. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): Linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmos. Chem. Phys. 12 (5):2777–2794. doi: 10.5194/acp-12-2777-2012.
  • Shiraiwa, M., and J. H. Seinfeld. 2012. Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophys. Res. Lett. 39 (24):L24801. doi: 10.1029/2012GL054008.
  • Shiraiwa, M., A. Zuend, A. K. Bertram, and J. H. Seinfeld. 2013. Gas–particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 15 (27):11441–11453. doi: 10.1039/C3CP51595H.
  • Shrivastava, M., C. D. Cappa, J. Fan, A. H. Goldstein, A. B. Guenther, J. L. Jimenez, C. Kuang, A. Laskin, S. T. Martin, N. L. Ng, et al. 2017. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 55 (2):509–559. doi: 10.1002/2016RG000540.
  • Shrivastava, M., S. Lou, A. Zelenyuk, R. C. Easter, R. A. Corley, B. D. Thrall, P. J. Rasch, J. D. Fast, S. L. Massey Simonich, H. Shen, et al. 2017. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. USA 114 (6):1246–1251. doi: 10.1073/pnas.1618475114.
  • Shrivastava, M., Q. Z. Rasool, B. Zhao, M. Octaviani, R. A. Zaveri, A. Zelenyuk, B. Gaudet, Y. Liu, J. E. Shilling, J. Schneider, et al. 2022. Tight coupling of surface and in-plant biochemistry and convection governs key fine particulate components over the amazon rainforest. ACS Earth Space Chem. 6 (2):380–390. doi: 10.1021/acsearthspacechem.1c00356.
  • Song, M., S. Ham, R. J. Andrews, Y. You, and A. K. Bertram. 2018. Liquid–liquid phase separation in organic particles containing one and two organic species: importance of the average O:C. Atmos. Chem. Phys. 18 (16):12075–12084. doi: 10.5194/acp-18-12075-2018.
  • Song, M., R. Jeong, D. Kim, Y. Qiu, X. Meng, Z. Wu, A. Zuend, Y. Ha, C. Kim, H. Kim, et al. 2022. Comparison of phase states of PM2.5 over megacities, Seoul and Beijing, and their implications on particle size distribution. Environ. Sci. Technol. 56 (24):17581–17590. doi: 10.1021/acs.est.2c06377.
  • Song, M., P. F. Liu, S. J. Hanna, R. A. Zaveri, K. Potter, Y. You, S. T. Martin, and A. K. Bertram. 2016. Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matter over megacities. Atmos. Chem. Phys. 16 (14):8817–8830. doi: 10.5194/acp-16-8817-2016.
  • Song, M., C. Marcolli, U. K. Krieger, A. Zuend, and T. Peter. 2012. Liquid-liquid phase separation in aerosol particles: Dependence on O:C, organic functionalities, and compositional complexity. Geophys. Res. Lett. 39 (19):n/a–/a. doi: 10.1029/2012GL052807.
  • Song, Y.-C., J. Lilek, J. B. Lee, M. N. Chan, Z. Wu, A. Zuend, and M. Song. 2021. Viscosity and phase state of aerosol particles consisting of sucrose mixed with inorganic salts. Atmos. Chem. Phys. 21 (13):10215–10228. doi: 10.5194/acp-21-10215-2021.
  • Sheldon, S., C. J. M. Choczynski, K. Morton, T. Palacios Diaz, R. D. Davis, and J. F. Davies. 2023. Exploring the hygroscopicity, water diffusivity, and viscosity of organic–inorganic aerosols—A case study on internally-mixed citric acid and ammonium sulfate particles. Environ. Sci: Atmos. 3 (1):24–34. doi: 10.1039/D2EA00116K.
  • Ullmann, D. A., M. L. Hinks, A. M. Maclean, C. L. Butenhoff, J. W. Grayson, K. Barsanti, J. L. Jimenez, S. A. Nizkorodov, S. Kamal, and A. K. Bertram. 2019. Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmos. Chem. Phys. 19 (3):1491–1503. doi: 10.5194/acp-19-1491-2019.
  • Wallace, B. J., C. L. Price, J. F. Davies, and T. C. Preston. 2021. Multicomponent diffusion in atmospheric aerosol particles. Environ. Sci: Atmos. 1 (1):45–55. doi: 10.1039/D0EA00008F.
  • Wang, B., A. T. Lambe, P. Massoli, T. B. Onasch, P. Davidovits, D. R. Worsnop, and D. A. Knopf. 2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation. J. Geophys. Res. 117 (D16):n/a–/a. doi: 10.1029/2012JD018063.
  • Wilson, J., D. Imre, J. Beránek, M. Shrivastava, and A. Zelenyuk. 2015. Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity. Environ. Sci. Technol. 49 (1):243–249. doi: 10.1021/es505331d.
  • Ye, Q., E. Shipley Robinson, X. Ding, P. Ye, R. C. Sullivan, and N. M. Donahue. 2016. Mixing of secondary organic aerosols versus relative humidity. Proc. Natl. Acad. Sci. USA 113 (45):12649–12654. doi: 10.1073/pnas.1604536113.
  • Ye, Q., M. A. Upshur, E. S. Robinson, F. M. Geiger, R. C. Sullivan, R. J. Thomson, and N. M. Donahue. 2018. Following particle-particle mixing in atmospheric secondary organic aerosols by using isotopically labeled terpenes. Chem 4 (2):318–333. doi: 10.1016/j.chempr.2017.12.008.
  • Zaveri, R. A., J. E. Shilling, A. Zelenyuk, M. A. Zawadowicz, K. Suski, S. China, D. M. Bell, D. Veghte, and A. Laskin. 2020. Particle-phase diffusion modulates partitioning of semivolatile organic compounds to aged secondary organic aerosol. Environ. Sci. Technol. 54 (5):2595–2605. doi: 10.1021/acs.est.9b05514.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced northern hemisphere midlatitudes. Geophys. Res. Lett. 34 (13):n/a–/a. doi: 10.1029/2007GL029979.
  • Zhang, Y., Y. Chen, A. T. Lambe, N. E. Olson, Z. Lei, R. L. Craig, Z. Zhang, A. Gold, T. B. Onasch, J. T. Jayne, et al. 2018. Effect of the aerosol-phase state on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ. Sci. Technol. Lett. 5 (3):167–174. doi: 10.1021/acs.estlett.8b00044.
  • Zhou, S., B. C. H. Hwang, P. S. J. Lakey, A. Zuend, J. P. D. Abbatt, and M. Shiraiwa. 2019. Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. Proc. Natl. Acad. Sci. USA 116 (24):11658–11663. doi: 10.1073/pnas.1902517116.
  • Zuend, A., C. Marcolli, A. M. Booth, D. M. Lienhard, V. Soonsin, U. K. Krieger, D. O. Topping, G. McFiggans, T. Peter, and J. H. Seinfeld. 2011. New and extended parameterization of the thermodynamic model AIOMFAC: Calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11 (17):9155–9206. doi: 10.5194/acp-11-9155-2011.
  • Zuend, A., C. Marcolli, B. P. Luo, and T. Peter. 2008. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos. Chem. Phys. 8 (16):4559–4593. doi: 10.5194/acp-8-4559-2008.