309
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparing respiratory aerosol emissions between children and adults during sustained phonation

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1186-1204 | Received 06 Apr 2023, Accepted 24 Aug 2023, Published online: 18 Oct 2023

References

  • Adenaiye, O. O., J. Lai, P. J. Bueno de Mesquita, F. Hong, S. Youssefi, J. German, S. H. S. Tai, B. Albert, M. Schanz, S. Weston, et al. 2022. Infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in exhaled aerosols and efficacy of masks during early mild infection. Clin. Infect. Dis. 75 (1):e241–e248. doi: 10.1093/cid/ciab797.
  • Ahmed, T., M. S. Rawat, A. R. Ferro, A. A. Mofakham, B. T. Helenbrook, G. Ahmadi, D. Senarathna, S. Mondal, D. Brown, and B. D. Erath. 2022. Characterizing respiratory aerosol emissions during sustained phonation. J. Expo. Sci. Environ. Epidemiol. 32 (5):689–96. doi: 10.1038/s41370-022-00430-z.
  • Allen, J. G., M. VanRy, and E. R. Jones. 2022. The Lancet Covid-19 commission task force on safe work, safe schools and safe travel: 6 priority areas. The Lancet
  • Alonso, S., M. Català, D. López, E. Álvarez-Lacalle, I. Jordan, J. J. García-García, V. Fumadó, C. Muñoz-Almagro, E. Gratacós, N. Balanza, et al. 2022. Individual prevention and containment measures in schools in Catalonia, Spain, and community transmission of SARS-CoV-2 after school re-opening. PLoS One 17 (2):e0263741. doi: 10.1371/journal.pone.0263741.
  • Alsved, M., A. Matamis, R. Bohlin, M. Richter, P.-E. Bengtsson, C.-J. Fraenkel, P. Medstrand, and J. Löndahl. 2020. Exhaled respiratory particles during singing and talking. Aerosol Sci. Technol. 54 (11):1245–8. doi: 10.1080/02786826.2020.1812502.
  • Archer, J., L. P. McCarthy, H. E. Symons, N. A. Watson, C. M. Orton, W. J. Browne, J. Harrison, B. Moseley, K. E. J. Philip, J. D. Calder, et al. 2022. Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing. Interface Focus. 12 (2):20210078. and doi: 10.1098/rsfs.2021.0078.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2019. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9 (1):2348. doi: 10.1038/s41598-019-38808-z.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2020. ffect of voicing and articulation manner on aerosol particle emission during human speech. PLoS One. 15 (1):e0227699. doi: 10.1371/journal.pone.0227699.
  • Averbuch, G. 2021. The spectrogram, method of reassignment, and frequency-domain beamforming. J. Acoust. Soc. Am. 149 (2):747–57. doi: 10.1121/10.0003384.
  • Bagheri, G., O. Schlenczek, L. Turco, B. Thiede, K. Stieger, J. M. Kosub, S. Clauberg, M. L. Pöhlker, C. Pöhlker, J. Moláček, et al. 2023. Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission. J. Aerosol Sci. 168:106102. doi: 10.1016/j.jaerosci.2022.106102.
  • Budzyn, S. E., M. J. Panaggio, S. E. Parks, M. Papazian, J. Magid, M. Eng, and L. C. Barrios. 2021. Pediatric COVID-19 cases in counties with and without school mask requirements—United States July 1–September 4, 2021. Morbidity and Mortality Weekly Report.
  • Burri, P. H. 1984. Fetal and postnatal development of the lung. Annu. Rev. Physiol. 46 (1):617–28. doi: 10.1146/annurev.ph.46.030184.003153.
  • Centers for Disease Control and Prevention. 2022. Operational guidance for K-12 schools and early care and education programs to support safe in-person learning. Centers for Disease Control and Prevention.
  • Coleman, K. K., D. J. W. Tay, K. S. Tan, S. W. X. Ong, M. H. Koh, Y. Q. Chin, H. Nasir, T. M. Mak, J. J. H. Chu, and D. K. Milton. 2021. Viral load of SARS-CoV-2 in respiratory aerosols emitted by COVID-19 patients while breathing, talking, and singing. MedRxiv.
  • Domino, S. P. 2021. A case study on pathogen transport, deposition, evaporation and transmission: Linking high-fidelity computational fluid dynamics simulations to probability of infection. Int. J. Comput. Fluid Dynam. 35 (9):743–57. doi: 10.1080/10618562.2021.1905801.
  • Donovan, C. V., C. Rose, K. N. Lewis, K. Vang, N. Stanley, M. Motley, C. C. Brown, F. J. Gray, Jr, J. W. Thompson, and B. C. Amick. III. 2022. SARS-CoV-2 incidence in K–12 school districts with mask-required versus mask-optional policies—Arkansas, August–October 2021. Morbidity and Mortality Weekly Report.
  • Eiche, T., and M. Kuster. 2020. Aerosol release by healthy people during speaking: Possible contribution to the transmission of SARS-CoV-2. Int. J. Environ. Res. Public Health. 17 (23):9088. doi: 10.3390/ijerph17239088.
  • Esmaeilzadeh, P. 2022. Public concerns and burdens associated with face mask-wearing: Lessons learned from the COVID-19 pandemic. Prog. Disaster Sci. 13:100215. doi: 10.1016/j.pdisas.2022.100215.
  • Farnan, L., A. Ivanova, and S. D. Peddada. 2014. Linear mixed effects models under inequality constraints with applications. PLoS One. 9 (1):e84778. doi: 10.1371/journal.pone.0084778.
  • Fleischer, M., Schumann, L. Hartmann, A., Walker, R., Scott  , Ifrim, L., von Zadow, D., Lüske, J., Seybold, J., Kriegel, M., Mürbe, D, et al. 2022. Pre-adolescent children exhibit lower aerosol particle volume emissions than adults for breathing, speaking, singing and shouting. J. Roy. Soc. Interface. 19 (187):20210833. doi: 10.1098/rsif.2021.0833.
  • Good, N., K. M. Fedak, D. Goble, A. Keisling, C. L’Orange, E. Morton, R. Phillips, K. Tanner, and J. Volckens. 2021. Respiratory aerosol emissions from vocalization: Age and sex differences are explained by volume and exhaled CO2. Environ. Sci. Technol. Lett. 8 (12):1071–6. doi: 10.1021/acs.estlett.1c00760.
  • Gorbunov, B. 2019. Aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance. Aerosol Air Qual. Res. 21 (3):200468. doi: 10.4209/aaqr.200468.
  • Gralton, J., E. Tovey, M.-L. McLaws, and W. D. Rawlinson. 2011. The role of particle size in aerosolised pathogen transmission: A review. J. Infect. 62 (1):1–13. doi: 10.1016/j.jinf.2010.11.010.
  • Gregson, F. K. A., N. A. Watson, C. M. Orton, A. E. Haddrell, L. P. McCarthy, T. J. R. Finnie, N. Gent, G. C. Donaldson, P. L. Shah, J. D. Calder, et al. 2021. Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing. Aerosol Sci. Technol. 55 (6):681–91. doi: 10.1080/02786826.2021.1883544.
  • Grömping, U. 2006. Relative importance for linear regression in R: The package relaimpo. J. Stat. Soft. 17 (1):1–27. doi: 10.18637/jss.v017.i01.
  • Hamilton, F. W., F. K. A. Gregson, D. T. Arnold, S. Sheikh, K. Ward, J. Brown, E. Moran, C. White, A. J. Morley, B. R. Bzdek, et al. 2022. Aerosol emission from the respiratory tract: An analysis of aerosol generation from oxygen delivery systems. Thorax 77 (3):276–82. and doi: 10.1136/thoraxjnl-2021-217577.
  • Han, Z. Y., W. G. Weng, and Q. Y. Huang. 2013. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R Soc. Interface 10 (88):20130560. doi: 10.1098/rsif.2013.0560.
  • Harrison, J., B. Saccente-Kennedy, C. M. Orton, L. P. McCarthy, J. Archer, H. E. Symons, A. Szczepanska, N. A. Watson, W. J. Browne, B. Moseley, et al. 2023. Emission rates, size distributions, and generation mechanism of oral respiratory droplets. Aerosol Sci. Technol. 57 (3):187–99. and doi: 10.1080/02786826.2022.2158778.
  • Hatch, T. F. 1961. Distribution and deposition of inhaled particles in respiratory tract. Bacteriol. Rev. 25 (3):237–40. doi: 10.1128/br.25.3.237-240.1961.
  • Hinds, W. C., and Y. Zhu. 2022. Aerosol technology: Properties, behavior, and measurement of airborne particles. Hoboken, NJ: John Wiley & Sons.
  • Hofmann, W. 2011. Modelling inhaled particle deposition in the human lung—A review. J. Aerosol Sci. 42 (10):693–724. doi: 10.1016/j.jaerosci.2011.05.007.
  • Issarow, C. M., N. Mulder, and R. Wood. 2015. Modelling the risk of airborne infectious disease using exhaled air. J. Theor. Biol. 372:100–6. doi: 10.1016/j.jtbi.2015.02.010.
  • Jelsema, C. M., and S. D. Peddada. 2016. CLME: An R package for linear mixed effects models under inequality constraints. J. Stat. Softw. 75 (1). doi: 10.18637/jss.v075.i01.
  • Johnson, G. R., L. Morawska, Z. D. Ristovski, M. Hargreaves, K. Mengersen, C. Y. H. Chao, M. P. Wan, Y. Li, X. Xie, D. Katoshevski, et al. 2011. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42 (12):839–51. and doi: 10.1016/j.jaerosci.2011.07.009.
  • Jones, T. C., G. Biele, B. Mühlemann, T. Veith, J. Schneider, J. Beheim-Schwarzbach, T. Bleicker, J. Tesch, M. L. Schmidt, L. E. Sander, et al. 2021. Estimating infectiousness throughout SARS-CoV-2 infection course. Science 373 (6551):eabi5273. doi: 10.1126/science.abi5273.
  • Kahane, J. C. 1978. A morphological study of the human prepubertal and pubertal larynx. Am. J. Anat. 151 (1):11–9. doi: 10.1002/aja.1001510103.
  • Kahane, J. C. 1982. Growth of the human prepubertal and pubertal larynx. J. Speech. Lang. Hear. Res. 25 (3):446–55. doi: 10.1044/jshr.2503.446.
  • Lee, J., D. Yoo, S. Ryu, S. Ham, K. Lee, M. Yeo, K. Min, and C. Yoon. 2019. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection. Aerosol Air Qual. Res. 19 (4):840–53. doi: 10.4209/aaqr.2018.01.0031.
  • Li, X., D. Lester, G. Rosengarten, C. Aboltins, M. Patel, and I. Cole. 2022. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Sci. Total Environ. 812:152592. doi: 10.1016/j.scitotenv.2021.152592.
  • Lofrese, J. J., C. Tupper, and S. L. Lappin. 2018. Physiology, residual volume.
  • McKnight, P. E., and J. Najab. 2010. Mann-Whitney U Test. The Corsini Encyclopedia of Psychology.
  • Morawska, L. J. G. R., G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during respiratory activities. J. Aerosol Sci. 40 (3):256–69. doi: 10.1016/j.jaerosci.2008.11.002.
  • Mürbe, D., M. Fleischer, J. Lange, H. Rotheudt, and M. Kriegel. 2020. Aerosol emission is increased in professional singing.
  • Mürbe, D., M. Kriegel, J. Lange, L. Schumann, A. Hartmann, and M. Fleischer. 2021. Aerosol emission of adolescents voices during speaking, singing and shouting. PLoS One. 16 (2):e0246819. doi: 10.1371/journal.pone.0246819.
  • Nazaroff, W. W. 2022. Indoor aerosol science aspects of SARS-CoV-2 transmission. Indoor Air. 32 (1):e12970. doi: 10.1111/ina.12970.
  • Public Health Ontario Report. 2022. Ontario Agency for Health Protection and Promotion. Mask-wearing in Children and COVID-19… What we know so far. Queen’s Printer for Ontario.
  • Pan, M., J. A. Lednicky, and C.-Y. Wu. 2019. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 127 (6):1596–611. doi: 10.1111/jam.14278.
  • Pleil, J. D., Wallace, M., Ariel Geer  , Davis, M. D, and Matty, C. M. 2021. The physics of human breathing: Flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration. J. Breath Res. 15 (4):042002. doi: 10.1088/1752-7163/ac2589.
  • Shao, S., D. Zhou, R. He, J. Li, S. Zou, K. Mallery, S. Kumar, S. Yang, and J. Hong. 2021. Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings. J. Aerosol Sci. 151:105661. doi: 10.1016/j.jaerosci.2020.105661.
  • Singhal, R., S. Ravichandran, R. Govindarajan, and S. S. Diwan. 2022. Virus transmission by aerosol transport during short conversations. Flow 2:E13. doi: 10.1017/flo.2022.7.
  • Spazzapan, E. A., V. C. d C. Marino, V. M. Cardoso, L. C. Berti, and E. M. G. Fabron. 2019. Acoustic characteristics of voice in different cycles of life: An integrative literature review. Rev. CEFAC 21 (3). doi: 10.1590/1982-0216/201921315018.
  • Thatcher, T. L., A. C. Lai, R. Moreno-Jackson, R. G. Sextro, and W. W. Nazaroff. 2002. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 36 (11):1811–9. doi: 10.1016/S1352-2310(02)00157-7.
  • Thatcher, T. L., and D. W. Layton. 1995. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 29 (13):1487–97. doi: 10.1016/1352-2310(95)00016-R.
  • Tonidandel, S., and J. M. LeBreton. 2011. Relative importance analysis: A useful supplement to regression analysis. J. Bus. Psychol. 26 (1):1–9. doi: 10.1007/s10869-010-9204-3.
  • Van Mersbergen, M., J. Marchetta, D. Foti, E. Pillow, A. Dasgupta, C. Cain, and S. Morvant. 2022. Comparison of aerosol emissions during specific speech tasks. arXiv preprint arXiv:2206.02524.
  • Vanbrabant, L., R. Van De Schoot, and Y. Rosseel. 2014. Constrained statistical inference: Sample-size tables for ANOVA and regression. Front. Psychol. 5:1565. doi: 10.3389/fpsyg.2014.01565.
  • Wang, Y., G. Xu, and Y.-W. Huang. 2020. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS One. 15 (10):e0241539. doi: 10.1371/journal.pone.0241539.
  • Yang, S., G. W. Lee, C.-M. Chen, C.-C. Wu, and K.-P. Yu. 2007. The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medicine 20 (4):484–94. doi: 10.1089/jam.2007.0610.
  • Yunusova, Y., N. L. Graham, S. Shellikeri, K. Phuong, M. Kulkarni, E. Rochon, D. F. Tang-Wai, T. W. Chow, S. E. Black, L. H. Zinman, et al. 2016. Profiling speech and pausing in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). PLoS One. 11 (1):e0147573. doi: 10.1371/journal.pone.0147573.
  • Zhang, Y. S., D. Y. Takahashi, D. A. Liao, A. A. Ghazanfar, and C. P. Elemans. 2019. Vocal state change through laryngeal development. Nat. Commun. 10 (1):4592. doi: 10.1038/s41467-019-12588-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.