222
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of sampling conditions to minimize sampling errors of both PM2.5 mass and its semi-volatile inorganic ion concentrations

, , , , &
Pages 1264-1279 | Received 14 Aug 2023, Accepted 26 Sep 2023, Published online: 24 Oct 2023

References

  • Amnuaylojaroen, T., P. Kaewkanchanawong, and P. Panpeng. 2023. Distribution and meteorological control of PM2.5 and its effect on visibility in northern Thailand. Atmosphere 14 (3):538. doi: 10.3390/atmos14030538.
  • Barhate, P. G., T. C. Le, K. K. Shukla, Z. Y. Lin, T. H. Hsieh, T. T. N. Nguyen, Z. Li, D. Y. Pui, and C. J. Tsai. 2022. Effect of aerosol sampling conditions on PM2.5 sampling accuracy. J. Aerosol Sci. 162:105968. doi: 10.1016/j.jaerosci.2022.105968.
  • Cheng, Y. H., and C. J. Tsai. 1998a. Evaporation loss of ammonium nitrate particles during filter sampling. J. Aerosol Sci. 29 (1–2):243. doi: 10.1016/S0021-8502(98)90294-4.
  • Cheng, Y. H., and C. J. Tsai. 1998b. Factors influencing pressure drop through a dust cake during filtration. Aerosol Sci. Technol. 29 (4):315–28. doi: 10.1080/02786829808965572.
  • Chien, C. L., C. Y. Tien, C. N. Liu, H. Ye, W. Huang, and C. J. Tsai. 2015. Design and testing of the NCTU micro-orifice cascade impactor (NMCI) for the measurement of nanoparticle size distributions. Aerosol Sci. Technol. 49 (10):1009–18. doi: 10.1080/02786826.2015.1089976.
  • Eatough, D. J., R. W. Long, W. K. Modey, and N. L. Eatough. 2003. Semi-volatile secondary organic aerosol in urban atmospheres: Meeting a measurement challenge. Atmos. Environ. 37 (9–10):1277–92. doi: 10.1016/S1352-2310(02)01020-8.
  • Gil, H. N., T. V. Dinh, J. H. Lee, B. G. Park, I. Y. Choi, S. W. Lee, I. Y. Kim, and J. C. Kim. 2021. Effects of humidity pretreatment devices on the loss of HCl gas emitted from industrial stacks. Atmosphere 13 (1):33. doi: 10.3390/atmos13010033.
  • Hong, G. H., T. C. Le, J. W. Tu, C. Wang, S. C. Chang, J. Y. Yu, G. Y. Lin, S. G. Aggarwal, and C. J. Tsai. 2021. Long-term evaluation and calibration of three types of low-cost PM2.5 sensors at different air quality monitoring stations. J. Aerosol Sci. 157:105829. doi: 10.4209/aaqr.2014.09.0213.
  • Kim, C. H., Y. Choi, and Y. S. Ghim. 2015. Characterization of volatilization of filter-sampled PM2.5 semi-volatile inorganic ions using a backup filter and denuders. Aerosol Air Qual. Res. 15 (3):814–20. doi: 10.4209/aaqr.2014.09.0213.
  • Le, T. C., C. X. Fu, J. C. Sung, Z. Y. Li, D. Y. Pui, and C. J. Tsai. 2020a. The performance of the PM2.5 VSCC and oil-wetted M-WINS in long-term field sampling studies. Atmos. Environ. 239:117804. doi: 10.1016/j.atmosenv.2020.117804.
  • Le, T. C., M. Mishra, T. T. N. Nguyen, D. Y. Pui, S. G. Aggarwal, C. T. Hsu, S. Y. Lai, and C. J. Tsai. 2023. PPWD-SDEP-IC monitoring system for atmospheric precursor inorganic gases and PM2.5 water-soluble ions. J. Aerosol Sci. 170:106160. doi: 10.1016/j.jaerosci.2023.106160.
  • Le, T. C., K. K. Shukla, Y. T. Chen, S. C. Chang, T. Y. Lin, Z. Li, D. Y. Pui, and C. J. Tsai. 2020b. On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmos. Environ. 222:117138. doi: 10.1016/j.atmosenv.2019.117138.
  • Le, T. C., Y. C. Wang, D. Y. H. Pui, and C. J. Tsai. 2020c. Characterization of atmospheric PM2.5 inorganic aerosols using the semi-continuous PPWD-PILS-IC system and the ISORROPIA-II. Atmosphere 11 (8):820. doi: 10.3390/atmos11080820.
  • Le, T. C., K. K. Shukla, J. C. Sung, Z. Li, H. Yeh, W. Huang, and C. J. Tsai. 2019. Sampling efficiency of low-volume PM10 inlets with different impaction substrates. Aerosol Sci. Technol. 53 (3):295–308. doi: 10.1080/02786826.2018.1559919.
  • Liu, C. N., S. C. Chen, and C. J. Tsai. 2011. A novel multifilter PM10– PM2.5 sampler (MFPPS). Aerosol Sci. Technol. 45 (12):1480–7. doi: 10.1080/02786826.2011.602135.
  • Liu, C. N., S. F. Lin, A. Awasthi, C. J. Tsai, Y. C. Wu, and C. F. Chen. 2014. Sampling and conditioning artifacts of PM2.5 in filter-based samplers. Atmos. Environ. 85:48–53. doi: 10.1080/02786826.2011.602135.
  • Liu, C. N., S. F. Lin, C. J. Tsai, Y. C. Wu, and C. F. Chen. 2015. Theoretical model for the evaporation loss of PM2.5 during filter sampling. Atmos. Environ. 109:79–86. doi: 10.1016/j.atmosenv.2015.03.012.
  • Mishra, M., S. Gulia, N. Shukla, S. Goyal, and U. C. Kulshrestha. 2023. Review of secondary aerosol formation and its contribution in air pollution load of Delhi NCR. Water. Air. Soil Pollut. 234 (1):47. doi: 10.1007/s11270-022-06047-0.
  • Nguyen, T. H., T. Nagashima, Q. V. Doan, A. Khan, and D. Niyogi. 2023. Source apportionment of PM2.5 and the impact of future PM2.5 changes on human health in the monsoon-influenced humid subtropical climate. Atmos. Pollut. Res. 14 (6):101777. doi: 10.1016/j.apr.2023.101777.
  • Park, S. S., S. A. Jung, B. J. Gong, S. Y. Cho, and S. J. Lee. 2013. Characteristics of PM2.5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring supersite in Korea. Aerosol Air Qual. Res. 13 (3):957–76. doi: 10.4209/aaqr.2012.07.0184.
  • Ray, A. E., and D. L. Vaughn. 2009. Standard operating procedure for the continuous measurement of particulate matter. Franklin, MA: Thermo Scientific TEOM.
  • Schwarz, J., M. Cusack, J. Karban, E. Chalupníčková, V. Havránek, J. Smolík, and V. Ždímal. 2016. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 176–177:108–20. doi: 10.1016/j.atmosres.2016.02.017.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken, NJ: John Wiley & Sons.
  • Sun, Y., Z. Wang, P. Fu, T. Yang, Q. Jiang, H. Dong, J. Li, and J. Jia. 2013. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys. 13 (9):4577–92. doi: 10.5194/acp-13-4577-2013.
  • Thangavel, P., D. Park, and Y. C. Lee. 2022. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health. 19 (12):7511. doi: 10.3390/ijerph19127511.
  • Tsai, C. J., C. H. Huang, S. H. Wang, and T. S. Shih. 2001a. Collection efficiency and capacity of three samplers for acidic and basic gases. Environ. Sci. Technol. 35 (12):2572–5. doi: 10.1021/es001943z.
  • Tsai, C. J., C. H. Huang, S. H. Wang, and T. S. Shih. 2001b. Design and testing of a personal porous-metal denuder. Aerosol Sci. Technol. 35 (1):611–6. doi: 10.1080/02786820117809.
  • US EPA. 2017. Ambient air monitoring reference and equivalent methods. 40 CFR, part 53, federal code of regulations. Washington, DC: US Environment Protection Agency.
  • Yao, Y., X. Ye, T. Gao, H. Feng, Y. Chen, and J. Chen. 2022. Significant impactor sampling artifacts of ammonium, nitrate, and organic acids. Atmos. Environ. 274:118985. doi: 10.1016/j.atmosenv.2022.118985.
  • Yu, X. Y., T. Lee, B. Ayres, S. M. Kreidenweis, W. Malm, and J. L. Collett. Jr. 2006. Loss of fine particle ammonium from denuded nylon filters. Atmos. Environ. 40 (25):4797–807. doi: 10.1016/j.atmosenv.2006.03.061.
  • Zhang, X., and P. H. McMurry. 1991. Theoretical analysis of evaporative losses of adsorbed or absorbed species during atmospheric aerosol sampling. Environ. Sci. Technol. 25 (3):456–9. doi: 10.1021/es00015a012.
  • Zhang, X., and P. H. McMurry. 1992. Evaporative losses of fine particulate nitrates during sampling. Atmos. Environ. Part A 26 (18):3305–12. doi: 10.1016/0960-1686(92)90347-N.
  • Zhao, P., F. Dong, D. He, X. Zhao, X. Zhang, W. Zhang, Q. Yao, and H. Liu. 2013. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 13 (9):4631–44. doi: 10.5194/acp-13-4631-2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.