336
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Probing the pH dependence of brown carbon formation: Insights from laboratory studies on aerosol particles and bulk phase solutions

ORCID Icon & ORCID Icon
Pages 374-388 | Received 09 Jun 2023, Accepted 14 Sep 2023, Published online: 24 Oct 2023

References

  • Ackendorf, J. M., M. G. Ippolito, and M. M. Galloway. 2017. pH dependence of the imidazole-2-carboxaldehyde hydration equilibrium: Implications for atmospheric light absorbance. Environ. Sci. Technol. Lett. 4 (12):551–5. doi: 10.1021/acs.estlett.7b00486.
  • Barnard, J. C., R. Volkamer, and E. I. Kassianov. 2008. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area. Atmos. Chem. Phys. 8 (22):6665–79. doi: 10.5194/acp-8-6665-2008.
  • Bones, D. L., D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, and S. A. Nizkorodov. 2010. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+ -mediated chemical aging over long time scales. J. Geophys. Res. 115 (D5):1–14. doi: 10.1029/2009JD012864.
  • Brüggemann, M., R. Xu, A. Tilgner, K. C. Kwong, A. Mutzel, H. Y. Poon, T. Otto, T. Schaefer, L. Poulain, M. N. Chan, et al. 2020. Organosulfates in ambient aerosol: State of knowledge and future research directions on formation, abundance, fate, and importance. Environ. Sci. Technol. 54 (7):3767–82. doi: 10.1021/acs.est.9b06751.
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann. 1992. Climate forcing by anthropogenic aerosols. Science (80-.) 225 (5043):423–430.
  • Chylek, P., and J. Wong. 1995. Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett. 22 (8):929–31. doi: 10.1029/95GL00800.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler. 1998. Thermodynamic model of the system H+-NH4+-Na+-SO42-NO3–Cl–H2O at 298.15 K. J. Phys. Chem. A 102 (12):2155–71. doi: 10.1021/jp973043j.
  • Colberg, C. A., U. K. Krieger, and T. Peter. 2004. Morphological investigations of single levitated H2SO 4/NH3/H2O aerosol particles during deliquescence/efflorescence experiments. J. Phys. Chem. A 108 (14):2700–9. doi: 10.1021/jp037628r.
  • Craig, R. L., P. K. Peterson, L. Nandy, Z. Lei, M. A. Hossain, S. Camarena, R. A. Dodson, R. D. Cook, C. S. Dutcher, and A. P. Ault. 2018. Direct determination of aerosol pH: Size-resolved measurements of submicrometer and supermicrometer aqueous particles. Anal. Chem. 90 (19):11232–9. doi: 10.1021/acs.analchem.8b00586.
  • De Haan, D. O., A. L. Corrigan, K. W. Smith, D. R. Stroik, J. J. Turley, F. E. Lee, M. A. Tolbert, J. L. Jimenez, K. E. Cordova, and G. R. Ferrell. 2009a. Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ. Sci. Technol. 43 (8):2818–24. doi: 10.1021/es803534f.
  • De Haan, D. O., L. N. Hawkins, J. A. Kononenko, J. J. Turley, A. L. Corrigan, M. A. Tolbert, and J. L. Jimenez. 2011. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. Environ. Sci. Technol. 45 (3):984–91. doi: 10.1021/es102933x.
  • De Haan, D. O., L. N. Hawkins, H. G. Welsh, R. Pednekar, J. R. Casar, E. A. Pennington, A. De Loera, N. G. Jimenez, M. A. Symons, M. Zauscher, et al. 2017. Brown carbon production in ammonium- or amine-containing aerosol particles by reactive uptake of methylglyoxal and photolytic cloud cycling. Environ. Sci. Technol. 51 (13):7458–66. doi: 10.1021/acs.est.7b00159.
  • De Haan, D. O., K. Jansen, A. D. Rynaski, W. R. P. Sueme, A. K. Torkelson, E. T. Czer, A. K. Kim, M. A. Rafla, A. C. De Haan, M. A. Tolbert, et al. 2020. Brown carbon production by aqueous-phase interactions of glyoxal and SO2. Environ. Sci. Technol. 54 (8):4781–9. doi: 10.1021/acs.est.9b07852.
  • De Haan, D. O., M. A. Tolbert, and J. L. Jimenez. 2009b. Atmospheric condensed-phase reactions of glyoxal with methylamine. Geophys. Res. Lett. 36 (11):2–6. doi: 10.1029/2009GL037441.
  • Denkenberger, K. A., R. C. Moffet, J. C. Holecek, T. P. Rebotier, and K. A. Prather. 2007. Real-time, single-particle measurements of oligomers in aged ambient aerosol particles. Environ. Sci. Technol. 41 (15):5439–46. doi: 10.1021/es070329l.
  • Dinar, E., A. Abo Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich. 2008. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discuss 137:279–95. doi: 10.1039/b703111d.
  • Ervens, B., B. J. Turpin, and R. J. Weber. 2011. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 11 (21):11069–102. doi: 10.5194/acp-11-11069-2011.
  • Freedman, M. A., C. A. Hasenkopf, M. R. Beaver, and M. A. Tolbert. 2009. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate. J. Phys. Chem. A 113 (48):13584–92. doi: 10.1021/jp906240y.
  • Freedman, M. A., E. J. E. Ott, and K. E. Marak. 2019. Role of pH in aerosol processes and measurement challenges. J. Phys. Chem. A 123 (7):1275–84. doi: 10.1021/acs.jpca.8b10676.
  • Galloway, M. M., P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, and F. N. Keutsch. 2009. Glyoxal uptake on ammonium sulphate seed aerosol: Reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 9 (10):3331–45. doi: 10.5194/acp-9-3331-2009.
  • Garland, R. M., A. R. Ravishankara, E. R. Lovejoy, M. A. Tolbert, and T. Baynard. 2007. Parameterization for the relative humidity dependence of light extinction: Organic-ammonium sulfate aerosol. J. Geophys. Res. 112 (D19):1–11. doi: 10.1029/2006JD008179.
  • Hasenkopf, C. A., M. R. Beaver, M. G. Trainer, H. Langley Dewitt, M. A. Freedman, O. B. Toon, C. P. McKay, and M. A. Tolbert. 2010. Optical properties of Titan and early Earth haze laboratory analogs in the mid-visible. Icarus 207 (2):903–13. doi: 10.1016/j.icarus.2009.12.015.
  • Hennigan, C. J., M. Mckee, V. Pratap, B. Boegner, J. Reno, M. Mclaren, and S. M. Lance. 2023. pH-dependence of brown carbon optical properties in cloud water. Egusph [Preprint].
  • Hinrichs, R. Z., P. Buczek, and J. J. Trivedi. 2016. Solar absorption by aerosol-bound nitrophenols compared to aqueous and gaseous nitrophenols. Environ. Sci. Technol. 50 (11):5661–7. doi: 10.1021/acs.est.6b00302.
  • Hoffer, A., A. Gelencsér, P. Guyon, G. Kiss, O. Schmid, G. P. Frank, P. Artaxo, and M. O. Andreae. 2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 6 (11):3563–70. doi: 10.5194/acp-6-3563-2006.
  • Imre, D. G., J. Xu, IN. Tang, and R. McGraw. 1997. Ammonium bisulfate/water equilibrium and metastability phase diagrams. J. Phys. Chem. A 101 (23):4191–5. doi: 10.1021/jp9704426.
  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–9. doi: 10.1126/science.1180353.
  • Jimenez, J. L., J. T. Jayne, Q. Shi, C. E. Kolb, D. R. Worsnop, I. Yourshaw, J. H. Seinfeld, R. C. Flagan, X. Zhang, K. A. Smith, et al. 2003. Ambient aerosol sampling using the Aerodyne aerosol mass spectrometer. J. Geophys. Res. 108 (D7):1–13. doi: 10.1029/2001JD001213.
  • Kinne, S., U. Lohmann, J. Feichter, M. Schulz, C. Timmreck, S. Ghan, R. Easter, M. Chin, P. Ginoux, T. Takemura, et al. 2003. Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. J. Geophys. Res. Atmos. 108 (D20):4634. doi: 10.1029/2001JD001253.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol 40 (9):697–708. doi: 10.1080/02786820600803917.
  • Laskin, A., J. Laskin, and S. A. Nizkorodov. 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115 (10):4335–82. doi: 10.1021/cr5006167.
  • Lee, A. K. Y., R. Zhao, R. Li, J. Liggio, S. M. Li, and J. P. D. Abbatt. 2013. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate. Environ. Sci. Technol. 47 (22):12819–26. doi: 10.1021/es402687w.
  • Liggio, J., S. M. Li, and R. McLaren. 2005. Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters. Environ. Sci. Technol. 39 (6):1532–41. doi: 10.1021/es048375y.
  • Lim, Y. B., Y. Tan, M. J. Perri, S. P. Seitzinger, and B. J. Turpin. 2010. Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 10 (21):10521–39. doi: 10.5194/acp-10-10521-2010.
  • Liu, J., P. Lin, A. Laskin, J. Laskin, S. M. Kathmann, M. Wise, R. Caylor, F. Imholt, V. Selimovic, and J. E. Shilling. 2016. Optical properties and aging of light-absorbing secondary organic aerosol. Atmos. Chem. Phys. 16 (19):12815–27. doi: 10.5194/acp-16-12815-2016.
  • Liu, J., E. Scheuer, J. Dibb, L. D. Ziemba, K. L. Thornhill, B. E. Anderson, A. Wisthaler, T. Mikoviny, J. J. Devi, M. Bergin, et al. 2014. Brown carbon in the continental troposphere. Geophys. Res. Lett. 41 (6):2191–5. doi: 10.1002/2013GL058976.
  • Marrero-Ortiz, W., M. Hu, Z. Du, Y. Ji, Y. Wang, S. Guo, Y. Lin, M. Gomez-Hermandez, J. Peng, Y. Li, et al. 2019. Formation and optical properties of brown carbon from small α-dicarbonyls and amines. Environ. Sci. Technol. 53 (1):117–26. doi: 10.1021/acs.est.8b03995.
  • Maruani, V., S. Narayanin-Richenapin, E. Framery, and B. Andrioletti. 2018. Acidic hydrothermal dehydration of d -glucose into humins: identification and characterization of intermediates. ACS Sustainable Chem. Eng. 6 (10):13487–93. doi: 10.1021/acssuschemeng.8b03479.
  • Maxut, A., B. Nozière, B. Fenet, and H. Mechakra. 2015. Formation mechanisms and yields of small imidazoles from reactions of glyoxal with NH4+ in water at neutral pH. Phys. Chem. Chem. Phys. 17 (31):20416–24. doi: 10.1039/c5cp03113c.
  • Munger, J. W., D. J. Jacob, B. C. Daube, L. W. Horowitz, W. C. Keene, and B. G. Heikes. 1995. Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia. J. Geophys. Res. 100 (D5):9325–33. doi: 10.1029/95JD00508.
  • Myhre, G., N. Bellouin, T. F. Berglen, T. K. Berntsen, O. Boucher, A. Grini, I. S. A. Isaksen, M. Johnsrud, M. I. Mishchenko, F. Stordal, et al. 2007. Comparison of the radiative properties and direct radiative e ect of aerosols from a global aerosol model and remote sensing data over ocean Title. Tellus B 59 (1):115–29. doi: 10.1111/j.1600-0889.2006.00226.x.
  • Nozière, B., P. Dziedzic, and A. Córdova. 2007. Formation of secondary light-absorbing “fulvic-like” oligomers: A common process in aqueous and ionic atmospheric particles? Geophys. Res. Lett. 34 (21):1–5. doi: 10.1029/2007GL031300.
  • Nozière, B., and W. Esteve. 2005. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols. Geophys. Res. Lett. 32 (3):1–5. doi: 10.1029/2004GL021942.
  • Peng, X., P. Vasilakos, A. Nenes, G. Shi, Y. Qian, X. Shi, Z. Xiao, K. Chen, Y. Feng, and A. G. Russell. 2019. Detailed analysis of estimated pH, activity coefficients, and ion concentrations between the three aerosol thermodynamic models. Environ. Sci. Technol. 53 (15):8903–13. doi: 10.1021/acs.est.9b00181.
  • Pye, H. O. T., A. Nenes, B. Alexander, A. P. Ault, M. C. Barth, S. L. Clegg, J. L. Collett, K. M. Fahey, C. J. Hennigan, H. Herrmann, et al. 2020. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 20 (8):4809–88. doi: 10.5194/acp-20-4809-2020.
  • Sareen, N., E. L. Shapiro, A. N. Schwier, and V. F. McNeill. 2009. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics – Part 2: Product identification using Aerosol-CIMS. Atmos. Chem. Phys. Discuss 9:15567–94.
  • Schueneman, M. K., B. A. Nault, P. Campuzano-Jost, D. S. Jo, D. A. Day, J. C. Schroder, B. B. Palm, A. Hodzic, J. E. Dibb, and J. L. Jimenez. 2021. Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmos. Meas. Tech. 14 (3):2237–60. doi: 10.5194/amt-14-2237-2021.
  • Sedehi, N., H. Takano, V. A. Blasic, K. A. Sullivan, and D. O. De Haan. 2013. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate. Atmos. Environ 77:656–63. doi: 10.1016/j.atmosenv.2013.05.070.
  • Shah, V., D. J. Jacob, J. M. Moch, X. Wang, and S. Zhai. 2020. Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems. Atmos. Chem. Phys. 20 (20):12223–45. doi: 10.5194/acp-20-12223-2020.
  • Shapiro, E. L., J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, and V. F. McNeill. 2009. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 9 (7):2289–300. doi: 10.5194/acp-9-2289-2009.
  • Silvern, R. F., D. J. Jacob, P. S. Kim, E. A. Marais, J. R. Turner, P. Campuzano-Jost, and J. L. Jimenez. 2017. Inconsistency of ammonium-sulfate aerosol ratios with thermodynamic models in the eastern US: A possible role of organic aerosol. Atmos. Chem. Phys. 17 (8):5107–18. doi: 10.5194/acp-17-5107-2017.
  • Song, C., M. Gyawali, R. A. Zaveri, J. E. Shilling, and W. P. Arnott. 2013. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity. J. Geophys. Res. Atmos. 118 (20):11,741–,749. doi: 10.1002/jgrd.50767.
  • Špaček, J. 2021. Organic carbon cycle in the atmosphere of Venus. Icarus [Preprint].
  • Trainic, M., A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich. 2011. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols. Atmos. Chem. Phys. 11 (18):9697–707. doi: 10.5194/acp-11-9697-2011.
  • Van Wyngarden, A. L., S. Pérez-Montaño, J. V. H. Bui, E. S. W. Li, T. E. Nelson, K. T. Ha, L. Leong, and L. T. Iraci. 2015. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities. Atmos. Chem. Phys. 15 (8):4225–39. doi: 10.5194/acp-15-4225-2015.
  • Wang, X., S. Gao, X. Yang, H. Chen, J. Chen, G. Zhuang, J. D. Surratt, M. N. Chan, and J. H. Seinfeld. 2010. Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. Environ. Sci. Technol. 44 (12):4441–6. doi: 10.1021/es1001117.
  • Yang, M., S. G. Howell, J. Zhuang, and B. J. Huebert. 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China - Interpretations of atmospheric measurements during EAST-AIRE. Atmos. Chem. Phys. 9 (6):2035–50. doi: 10.5194/acp-9-2035-2009.
  • Yang, Z., N. T. Tsona, C. George, and L. Du. 2022. Nitrogen-containing compounds enhance light absorption of aromatic-derived brown carbon. Environ. Sci. Technol. 56 (7):4005–16. doi: 10.1021/acs.est.1c08794.
  • Yu, G., A. R. Bayer, M. M. Galloway, K. J. Korshavn, C. G. Fry, and F. N. Keutsch. 2011. Glyoxal in aqueous ammonium sulfate solutions: Products, kinetics and hydration effects. Environ. Sci. Technol. 45 (15):6336–42. doi: 10.1021/es200989n.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34 (13):n/a–/a. doi: 10.1029/2007GL029979.
  • Zhao, R., A. K. Y. Lee, L. Huang, X. Li, F. Yang, and J. P. D. Abbatt. 2015. Photochemical processing of aqueous atmospheric brown carbon. Atmos. Chem. Phys. 15 (11):6087–100. doi: 10.5194/acp-15-6087-2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.