230
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Estimating viscosity of individual substrate-deposited particles from measurements of their height-to-width ratios

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 401-410 | Received 12 Jul 2023, Accepted 04 Oct 2023, Published online: 25 Oct 2023

References

  • Baker, M. B. 1997. Cloud microphysics and climate. Science 276 (5315):1072–8. doi: 10.1126/science.276.5315.1072.
  • Baker, M. B., and T. Peter. 2008. Small-scale cloud processes and climate. Nature 451 (7176):299–300. doi: 10.1038/nature06594.
  • Bateman, A. P., H. Belassein, and S. T. Martin. 2014. Impactor apparatus for the study of particle rebound: Relative humidity and capillary forces. Aerosol Sci. Technol. 48 (1):42–52. doi: 10.1080/02786826.2013.853866.
  • Bateman, A. P., A. K. Bertram, and S. T. Martin. 2015. Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials. J. Phys. Chem. A 119 (19):4386–95. doi: 10.1021/jp508521c.
  • Berkemeier, T., S. S. Steimer, U. K. Krieger, T. Peter, U. Pöschl, M. Ammann, and M. Shiraiwa. 2016. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry. Phys. Chem. Chem. Phys. 18 (18):12662–74. doi: 10.1039/C6CP00634E.
  • Bones, D. L., J. P. Reid, D. M. Lienhard, and U. K. Krieger. 2012. Comparing the mechanism of water condensation and evaporation in glassy aerosol. Proc. Natl. Acad. Sci. USA 109 (29):11613–8. doi: 10.1073/pnas.1200691109.
  • Bzdek, B. R., L. Collard, J. E. Sprittles, A. J. Hudson, and J. P. Reid. 2016. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers. J. Chem. Phys. 145 (5):054502. doi: 10.1063/1.4959901.
  • Bzdek, B. R., R. M. Power, S. H. Simpson, J. P. Reid, and C. P. Royall. 2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 7 (1):274–85. doi: 10.1039/C5SC03184B.
  • Evoy, E., K. J. Kiland, Y. Huang, E. G. Schnitzler, A. M. Maclean, S. Kamal, J. P. D. Abbatt, and A. K. Bertram. 2021. Diffusion coefficients and mixing times of organic molecules in β-caryophyllene secondary organic aerosol (SOA) and biomass burning organic aerosol (BBOA). ACS Earth Space Chem. 5 (11):3268–78. doi: 10.1021/acsearthspacechem.1c00317.
  • Evoy, E., A. M. Maclean, G. Rovelli, Y. Li, A. P. Tsimpidi, V. A. Karydis, S. Kamal, J. Lelieveld, M. Shiraiwa, J. P. Reid, et al. 2019. Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. Atmos. Chem. Phys. 19 (15):10073–85. doi: 10.5194/acp-19-10073-2019.
  • Fraund, M., D. J. Bonanno, S. China, D. Q. Pham, D. Veghte, J. Weis, G. Kulkarni, K. Teske, M. K. Gilles, A. Laskin, et al. 2020. Optical properties and composition of viscous organic particles found in the Southern Great Plains. Atmos. Chem. Phys. 20 (19):11593–606. doi: 10.5194/acp-20-11593-2020.
  • Galeazzo, T., R. Valorso, Y. Li, M. Camredon, B. Aumont, and M. Shiraiwa. 2021. Estimation of secondary organic aerosol viscosity from explicit modeling of gas-phase oxidation of isoprene and α-pinene. Atmos. Chem. Phys. 21 (13):10199–213. doi: 10.5194/acp-21-10199-2021.
  • Grayson, J. W., M. Song, M. Sellier, and A. K. Bertram. 2015. Validation of the poke-flow technique combined with simulations of fluid flow for determining viscosities in samples with small volumes and high viscosities. Atmos. Meas. Tech. 8 (6):2463–72. doi: 10.5194/amt-8-2463-2015.
  • Hinks, M. L., M. V. Brady, H. Lignell, M. Song, J. W. Grayson, A. K. Bertram, P. Lin, A. Laskin, J. Laskin, and S. A. Nizkorodov. 2016. Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Phys. Chem. Chem. Phys. 18 (13):8785–93. doi: 10.1039/C5CP05226B.
  • Hosny, N. A., C. Fitzgerald, A. Vyšniauskas, A. Athanasiadis, T. Berkemeier, N. Uygur, U. Pöschl, M. Shiraiwa, M. Kalberer, F. D. Pope, et al. 2016. Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chem. Sci. 7 (2):1357–67. doi: 10.1039/C5SC02959G.
  • Huang, W., H. Saathoff, A. Pajunoja, X. Shen, K.-H. Naumann, R. Wagner, A. Virtanen, T. Leisner, and C. Mohr. 2018. α-pinene secondary organic aerosol at low temperature: Chemical composition and implications for particle viscosity. Atmos. Chem. Phys. 18 (4):2883–98. doi: 10.5194/acp-18-2883-2018.
  • Ingram, S., G. Rovelli, Y.-C. Song, D. Topping, C. S. Dutcher, S. Liu, L. Nandy, M. Shiraiwa, and J. P. Reid. 2021. Accurate prediction of organic aerosol evaporation using kinetic multilayer modeling and the Stokes–Einstein equation. J. Phys. Chem. A 125 (16):3444–56. doi: 10.1021/acs.jpca.1c00986.
  • Ivosevic, M., R. A. Cairncross, and R. Knight. 2006. 3D predictions of thermally sprayed polymer splats: Modeling particle acceleration, heating and deformation on impact with a flat substrate. Int. J. Heat Mass Transf. 49 (19–20):3285–97. doi: 10.1016/j.ijheatmasstransfer.2006.03.028.
  • Kilcoyne, A. L. D., T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, et al. 2003. Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. J. Synchrotron Radiat. 10 (Pt 2):125–36. doi: 10.1107/S0909049502017739.
  • Kirpes, R. M., Z. Lei, M. Fraund, M. J. Gunsch, N. W. May, T. E. Barrett, C. E. Moffett, A. J. Schauer, B. Alexander, L. M. Upchurch, et al. 2022. Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere. Proc. Natl. Acad. Sci. USA 119 (14):e2104496119. doi: 10.1073/pnas.2104496119.
  • Koop, T., J. Bookhold, M. Shiraiwa, and U. Pöschl. 2011. Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13 (43):19238–55. doi: 10.1039/c1cp22617g.
  • Krieger, U. K., C. Marcolli, and J. P. Reid. 2012. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 41 (19):6631–62. doi: 10.1039/c2cs35082c.
  • Lee, H. D., K. K. Ray, and A. V. Tivanski. 2017. Solid, semisolid, and liquid phase states of individual submicrometer particles directly probed using atomic force microscopy. Anal. Chem. 89 (23):12720–6. doi: 10.1021/acs.analchem.7b02755.
  • Lei, Z., N. E. Olson, Y. Zhang, Y. Chen, A. T. Lambe, J. Zhang, N. J. White, J. M. Atkin, M. M. Banaszak Holl, Z. Zhang, et al. 2022. Morphology and viscosity changes after reactive uptake of isoprene epoxydiols in submicrometer phase separated particles with secondary organic aerosol formed from different volatile organic compounds. ACS Earth Space Chem. 6 (4):871–82. doi: 10.1021/acsearthspacechem.1c00156.
  • Lei, Z., J. Zhang, E. A. Mueller, Y. Xiao, K. R. Kolozsvari, A. J. McNeil, M. M. Banaszak Holl, and A. P. Ault. 2022. Glass transition temperatures of individual submicrometer atmospheric particles: Direct measurement via heated atomic force microscopy probe. Anal. Chem. 94 (35):11973–7. doi: 10.1021/acs.analchem.2c01979.
  • Lienhard, D. M., A. J. Huisman, U. K. Krieger, Y. Rudich, C. Marcolli, B. P. Luo, D. L. Bones, J. P. Reid, A. T. Lambe, M. R. Canagaratna, et al. 2015. Viscous organic aerosol particles in the upper troposphere: Diffusivity-controlled water uptake and ice nucleation? Atmos. Chem. Phys. 15 (23):13599–613. doi: 10.5194/acp-15-13599-2015.
  • Lignell, H., M. L. Hinks, and S. A. Nizkorodov. 2014. Exploring matrix effects on photochemistry of organic aerosols. Proc. Natl. Acad. Sci. USA 111 (38):13780–5. doi: 10.1073/pnas.1322106111.
  • Lohmann, U., and J. Feichter. 2005. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 5 (3):715–37. doi: 10.5194/acp-5-715-2005.
  • Maclean, A. M., C. L. Butenhoff, J. W. Grayson, K. Barsanti, J. L. Jimenez, and A. K. Bertram. 2017. Mixing times of organic molecules within secondary organic aerosol particles: A global planetary boundary layer perspective. Atmos. Chem. Phys. 17 (21):13037–48. doi: 10.5194/acp-17-13037-2017.
  • Maclean, A. M., Y. Li, G. V. Crescenzo, N. R. Smith, V. A. Karydis, A. P. Tsimpidi, C. L. Butenhoff, C. L. Faiola, J. Lelieveld, S. A. Nizkorodov, et al. 2021. Global distribution of the phase state and mixing times within secondary organic aerosol particles in the troposphere based on room-temperature viscosity measurements. ACS Earth Space Chem. 5 (12):3458–73. doi: 10.1021/acsearthspacechem.1c00296.
  • Maclean, A. M., N. R. Smith, Y. Li, Y. Huang, A. P. S. Hettiyadura, G. V. Crescenzo, M. Shiraiwa, A. Laskin, S. A. Nizkorodov, and A. K. Bertram. 2021. Humidity-dependent viscosity of secondary organic aerosol from ozonolysis of β-caryophyllene: Measurements, predictions, and implications. ACS Earth Space Chem. 5 (2):305–18. doi: 10.1021/acsearthspacechem.0c00296.
  • Marple, V. A., K. L. Rubow, and S. M. Behm. 1991. A microorifice uniform deposit impactor (MOUDI): Description, calibration, and use. Aerosol Sci. Technol. 14 (4):434–46. doi: 10.1080/02786829108959504.
  • Marshall, F. H., R. E. H. Miles, Y.-C. Song, P. B. Ohm, R. M. Power, J. P. Reid, and C. S. Dutcher. 2016. Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity. Chem. Sci. 7 (2):1298–308. doi: 10.1039/C5SC03223G.
  • Mikhailov, E., S. Vlasenko, S. T. Martin, T. Koop, and U. Pöschl. 2009. Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9 (24):9491–522. doi: 10.5194/acp-9-9491-2009.
  • Morales, A. C., J. M. Tomlin, C. P. West, F. A. Rivera-Adorno, B. N. Peterson, S. A. L. Sharpe, Y. Noh, S. M. T. Sendesi, B. E. Boor, J. A. Howarter, et al. 2022. Atmospheric emission of nanoplastics from sewer pipe repairs. Nat. Nanotechnol. 17 (11):1171–7. doi: 10.1038/s41565-022-01219-9.
  • O'Brien, R. E., A. Neu, S. A. Epstein, A. C. MacMillan, B. Wang, S. T. Kelly, S. A. Nizkorodov, A. Laskin, R. C. Moffet, and M. K. Gilles. 2014. Physical properties of ambient and laboratory-generated secondary organic aerosol. Geophys. Res. Lett. 41 (12):4347–53. doi: 10.1002/2014GL060219.
  • O'Meara, S., D. O. Topping, and G. McFiggans. 2016. The rate of equilibration of viscous aerosol particles. Atmos. Chem. Phys. 16 (8):5299–313. doi: 10.5194/acp-16-5299-2016.
  • Pandey, A., N. J. Shetty, and R. K. Chakrabarty. 2019. Aerosol light absorption from optical measurements of PTFE membrane filter samples: Sensitivity analysis of optical depth measures. Atmos. Meas. Tech. 12 (2):1365–73. doi: 10.5194/amt-12-1365-2019.
  • Power, R. M., and J. P. Reid. 2014. Probing the micro-rheological properties of aerosol particles using optical tweezers. Rep. Prog. Phys. 77 (7):074601. doi: 10.1088/0034-4885/77/7/074601.
  • Power, R. M., S. H. Simpson, J. P. Reid, and A. J. Hudson. 2013. The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chem. Sci. 4 (6):2597–604. doi: 10.1039/c3sc50682g.
  • Price, H. C., J. Mattsson, Y. Zhang, A. K. Bertram, J. F. Davies, J. W. Grayson, S. T. Martin, D. O'Sullivan, J. P. Reid, A. M. J. Rickards, et al. 2015. Water diffusion in atmospherically relevant α-pinene secondary organic material. Chem. Sci. 6 (8):4876–83. doi: 10.1039/C5SC00685F.
  • Ray, K. K., H. D. Lee, M. A. Gutierrez, F. J. Chang, and A. V. Tivanski. 2019. Correlating 3D morphology, phase state, and viscoelastic properties of individual substrate-deposited particles. Anal. Chem. 91 (12):7621–30. doi: 10.1021/acs.analchem.9b00333.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9 (1):956. doi: 10.1038/s41467-018-03027-z.
  • Renbaum-Wolff, L., J. W. Grayson, A. P. Bateman, M. Kuwata, M. Sellier, B. J. Murray, J. E. Shilling, S. T. Martin, and A. K. Bertram. 2013. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity. Proc. Natl. Acad. Sci. USA 110 (20):8014–9. doi: 10.1073/pnas.1219548110.
  • Renbaum-Wolff, L., J. W. Grayson, and A. K. Bertram. 2013. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmos. Chem. Phys. 13 (2):791–802. doi: 10.5194/acp-13-791-2013.
  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner. 2014. Climate effects of aerosol-cloud interactions. Science 343 (6169):379–80. doi: 10.1126/science.1247490.
  • Rothfuss, N. E., and M. D. Petters. 2016. Coalescence-based assessment of aerosol phase state using dimers prepared through a dual-differential mobility analyzer technique. Aerosol Sci. Technol. 50 (12):1294–305. doi: 10.1080/02786826.2016.1221050.
  • Rothfuss, N. E., and M. D. Petters. 2017. Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols. Phys. Chem. Chem. Phys. 19 (9):6532–45. doi: 10.1039/C6CP08593H.
  • Saukko, E., H. Kuuluvainen, and A. Virtanen. 2012. A method to resolve the phase state of aerosol particles. Atmos. Meas. Tech. 5 (1):259–65. doi: 10.5194/amt-5-259-2012.
  • Sellier, M., J. Taylor, A. K. Bertram, and P. Mandin. 2019. Models for the bead mobility technique: A droplet-based viscometer. Aerosol Sci. Technol. 53 (7):749–59. doi: 10.1080/02786826.2019.1599320.
  • Shiraiwa, M., M. Ammann, T. Koop, and U. Pöschl. 2011. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA 108 (27):11003–8. doi: 10.1073/pnas.1103045108.
  • Shiraiwa, M., Y. Li, A. P. Tsimpidi, V. A. Karydis, T. Berkemeier, S. N. Pandis, J. Lelieveld, T. Koop, and U. Pöschl. 2017. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8 (1):15002. doi: 10.1038/ncomms15002.
  • Shiraiwa, M., and J. H. Seinfeld. 2012. Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophys. Res. Lett. 39 (24):L24801. doi: 10.1029/2012GL054008.
  • Shiraiwa, M., A. Zuend, A. K. Bertram, and J. H. Seinfeld. 2013. Gas–particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 15 (27):11441–53. doi: 10.1039/c3cp51595h.
  • Song, Y. C., A. E. Haddrell, B. R. Bzdek, J. P. Reid, T. Bannan, D. O. Topping, C. Percival, and C. Cai. 2016. Measurements and predictions of binary component aerosol particle viscosity. J. Phys. Chem. A 120 (41):8123–37. doi: 10.1021/acs.jpca.6b07835.
  • Steimer, S. S., T. Berkemeier, A. Gilgen, U. K. Krieger, T. Peter, M. Shiraiwa, and M. Ammann. 2015. Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass. Phys. Chem. Chem. Phys. 17 (46):31101–9. doi: 10.1039/C5CP04544D.
  • Tackman, E. C., D. N. Higgins, D. E. Kerecman, E.-J E. Ott, M. V. Johnston, and M. A. Freedman. 2023. The use of transmission electron microscopy with scanning mobility particle size spectrometry for an enhanced understanding of the physical characteristics of aerosol particles generated with a flow tube reactor. Aerosol Sci. Technol. 57 (4):279–95. doi: 10.1080/02786826.2023.2173999.
  • Tomlin, J. M., K. A. Jankowski, F. A. Rivera-Adorno, M. Fraund, S. China, B. H. Stirm, R. Kaeser, G. S. Eakins, R. C. Moffet, P. B. Shepson, et al. 2020. Chemical imaging of fine mode atmospheric particles collected from a research aircraft over agricultural fields. ACS Earth Space Chem. 4 (11):2171–84. doi: 10.1021/acsearthspacechem.0c00172.
  • Ullmann, D. A., M. L. Hinks, A. M. Maclean, C. L. Butenhoff, J. W. Grayson, K. Barsanti, J. L. Jimenez, S. A. Nizkorodov, S. Kamal, and A. K. Bertram. 2019. Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmos. Chem. Phys. 19 (3):1491–503. doi: 10.5194/acp-19-1491-2019.
  • Virtanen, A., J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirilä, J. Leskinen, J. M. Mäkelä, J. K. Holopainen, U. Pöschl, M. Kulmala, et al. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467 (7317):824–7. doi: 10.1038/nature09455.
  • Wang, B., T. H. Harder, S. T. Kelly, D. S. Piens, S. China, L. Kovarik, M. Keiluweit, B. W. Arey, M. K. Gilles, and A. Laskin. 2016. Airborne soil organic particles generated by precipitation. Nat. Geosci. 9 (6):433–7. doi: 10.1038/ngeo2705.
  • Wong, J. P. S., S. Zhou, and J. P. D. Abbatt. 2015. Changes in secondary organic aerosol composition and mass due to photolysis: Relative humidity dependence. J. Phys. Chem. A 119 (19):4309–16. doi: 10.1021/jp506898c.
  • Ye, Q., E. S. Robinson, X. Ding, P. Ye, R. C. Sullivan, and N. M. Donahue. 2016. Mixing of secondary organic aerosols versus relative humidity. Proc. Natl. Acad. Sci. USA 113 (45):12649–54. doi: 10.1073/pnas.1604536113.
  • Yli-Juuti, T., A. Pajunoja, O.-P. Tikkanen, A. Buchholz, C. Faiola, O. Väisänen, L. Hao, E. Kari, O. Peräkylä, O. Garmash, et al. 2017. Factors controlling the evaporation of secondary organic aerosol from α-pinene ozonolysis. Geophys. Res. Lett. 44 (5):2562–70. doi: 10.1002/2016GL072364.
  • Zhang, Y., M. S. Sanchez, C. Douet, Y. Wang, A. P. Bateman, Z. Gong, M. Kuwata, L. Renbaum-Wolff, B. B. Sato, P. F. Liu, et al. 2015. Changing shapes and implied viscosities of suspended submicron particles. Atmos. Chem. Phys. 15 (14):7819–29. doi: 10.5194/acp-15-7819-2015.
  • Zhou, S., M. Shiraiwa, R. D. McWhinney, U. Pöschl, and J. P. D. Abbatt. 2013. Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discuss. 165:391–406. doi: 10.1039/C3FD00030C.
  • Zobrist, B., C. Marcolli, D. A. Pedernera, and T. Koop. 2008. Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 8 (17):5221–44. doi: 10.5194/acp-8-5221-2008.
  • Zobrist, B., V. Soonsin, B. P. Luo, U. K. Krieger, C. Marcolli, T. Peter, and T. Koop. 2011. Ultra-slow water diffusion in aqueous sucrose glasses. Phys. Chem. Chem. Phys. 13 (8):3514–26. doi: 10.1039/c0cp01273d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.