228
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A comparison of real-world outdoor aging of Bacillus thuringiensis bioaerosols using Goldberg rotating drums and synthetic spider webs in Conroe, Texas

ORCID Icon, , , , , , , ORCID Icon, & ORCID Icon show all
Pages 16-25 | Received 04 Apr 2023, Accepted 29 Sep 2023, Published online: 07 Nov 2023

References

  • Anderson, B. D., J. A. Lednicky, M. Torremorell, and G. C. Gray. 2017. The use of bioaerosol sampling for airborne virus surveillance in swine production facilities: A mini review. Front. Vet. Sci. 4:121. doi: 10.3389/fvets.2017.00121.
  • Cox, R. A., M. Ammann, J. N. Crowley, P. T. Griffiths, H. Herrmann, E. H. Hoffmann, M. E. Jenkin, V. F. McNeill, A. Mellouki, C. J. Penkett, et al. 2021. Opinion: The germicidal effect of ambient air (open-air factor) revisited. Atmos. Chem. Phys. 21 (17):13011–8. doi: 10.5194/acp-21-13011-2021.
  • Benbough, J. E., and A. M. Hood. 1971. Viricidal activity of open air. J. Hyg. (Lond). 69 (4):619–26. doi: 10.1017/S0022172400021896.
  • Camilleri, E., G. Korza, L. D. C. Huesca-Espita, B. Setlow, D. Stamatis, and P. Setlow. 2020. Mechanisms of killing of Bacillus thuringiensis Al Hakam spores in a blast environment with and without iodic acid. J. Appl. Microbiol. 128 (5):1378–89. doi: 10.1111/jam.14573.
  • Carrera, M., J. Kesavan, R. Zandomeni, and J. L. Sagripanti. 2005. Method to determine the number of bacterial spores within aerosol particles. Aerosol. Sci. Technol. 39 (10):960–5. doi: 10.1080/02786820500352098.
  • Cox, C. S., and L. J. Goldberg. 1972. Aerosol survival of Pasteurella Tularensis and the influence of relative humidity. Appl. Microbiol. 23 (1):1–3. doi: 10.1128/AEM.23.1.1-3.1972.
  • Dark, F. A., and T. Nash. 1970. Comparative toxicity of various ozonized olefins to bacteria suspended in air. J. Hyg. (Lond). 68 (2):245–52. doi: 10.1017/S0022172400028710.
  • Dessens, H. 1949. The Use of Spiders’ Threads in the Study of Condensation Nuclei. Q. J. R. Meteorol. Soc. 75 (323): 23–26. doi: 10.1002/qj.49707532305.
  • Donaldson, A. I. 1972. The influence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. J. Gen. Virol. 15 (1):25–33. doi: 10.1099/0022-1317-15-1-25.
  • Fernandez, M. O., R. J. Thomas, N. J. Garton, A. Hudson, A. Haddrell, and J. P. Reid. 2019. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. R Soc. Interface 16 (150):20180779. doi: 10.1098/rsif.2018.0779.
  • Fischer, R. J., T. Bushmaker, S. Judson, and V. J. Munster. 2016. Comparison of the aerosol stability of 2 strains of Zaire Ebolavirus from the 1976 and 2013 outbreaks. J. Infect. Dis. 214 (3):1–4. doi: 10.1093/infdis/jiw193.
  • Goldberg, L. J., H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny. 1958. The use of a rotating drum for the study of aerosols over extended periods of time. Am. J. Hyg. 68 (1):85–93. doi: 10.1093/oxfordjournals.aje.a119954.
  • Haddrell, A. E., and R. J. Thomas. 2017. Aerobiology: Experimental considerations, observations, and future tools. Appl. Environ. Microbiol. 83 (17):1–15. doi: 10.1128/AEM.00809-17.
  • Handler, F. A., and J. M. Edmonds. 2015. Quantitative analysis of effects of UV exposure and spore cluster size on deposition and inhalation hazards of bacillus spores. Aerosol Sci. Technol. 49 (11):1121–30. doi: 10.1080/02786826.2015.1102857.
  • Handley, B. A., and A. J. F. Webster. 1995. Some factors affecting the airborne survival of bacteria outdoors. J. Appl. Bacteriol. 79 (4):368–78. doi: 10.1111/j.1365-2672.1995.tb03150.x.
  • Handley, B. A., and J. M. Roe. 1994. An alternative microthread for the study of airborne survival of bacteria outdoors. J. Appl. Bacteriol. 77 (5):504–8. doi: 10.1111/j.1365-2672.1994.tb04394.x.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York, NY: Wiley.
  • Kinahan, S. M., M. S. Tezak, C. M. Siegrist, G. Lucero, B. L. Servantes, J. L. Santarpia, A. Kalume, J. Zhang, M. Felton, C. C. Williamson, et al. 2019. Changes of fluorescence spectra and viability from aging aerosolized E. coli cells under various laboratory-controlled conditions in an advanced rotating drum. Aerosol. Sci. Technol. 53 (11):1261–76. doi: 10.1080/02786826.2019.1653446.
  • Kormuth, K. A., K. Lin, A. J. Prussin, E. P. Vejerano, A. J. Tiwari, S. S. Cox, M. M. Myerburg, S. S. Lakdawala, and L. C. Marr. 2018. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity. J. Infect. Dis. 218 (5):739–47. doi: 10.1093/infdis/jiy221.
  • May, K. R., and H. A. Druett. 1968. A microthread technique for studying the viability of microbes in a simulated airborne state. J. Gen. Microbiol. 51 (3):353–66. doi: 10.1099/00221287-51-3-353.
  • Mik, G. D., and I. D. Groot. 1977. The germicidal effect of the open air in different parts of the Netherlands. J. Hyg. (Lond). 78 (2):175–87. doi: 10.1017/S0022172400056072.
  • Mubareka, S., N. Groulx, E. Savory, T. Cutts, S. Theriault, J. A. Scott, C. J. Roy, N. Turgeon, E. Bryce, G. Astrakianakis, et al. 2019. Bioaerosols and transmission, a diverse and growing community of practice. Front. Public Health. 7:23. doi: 10.3389/fpubh.2019.00023.
  • Nicholson, W. L., and P. Setlow. 1990. Sporulation, germination and outgrowth. In Molecular biological methods for bacillus, eds. C.R. Hardwood and S.M. Cutting, 391–450. Chichester: John Wiley & Sons, Ltd.
  • Oswin, H. P., A. E. Haddrell, M. Otero-Fernandez, J. F. S. Mann, T. A. Cogan, T. G. Hilditch, J. Tian, D. A. Hardy, D. J. Hill, A. Finn, et al. 2022. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc. Natl. Acad. Sci. USA. 119(27):e2200109119. doi: 10.1073/pnas.2200109119.
  • Pan, Y. L., A. Kalume, C. Wang, and J. Santarpia. 2021. Atmospheric aging processes of bioaerosols under laboratory-controlled conditions: A review. J. Aerosol. Sci. 155:105767. doi: 10.1016/j.jaerosci.2021.105767.
  • Piercy, T. J., S. J. Smither, J. A. Steward, L. Eastaugh, and M. S. Lever. 2010. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J. Appl. Microbiol. 109 (5):1531–9. doi: 10.1111/j.1365-2672.2010.04778.x.
  • Prussin, A. J., D. O. Schwake, K. Lin, D. L. Gallagher, L. Buttling, and L. C. Marr. 2018. Survival of the enveloped virus Phi6 in droplets as a function of relative humidity, absolute humidity, and temperature. Appl. Environ. Microbiol. 84 (12):e00551-18. doi: 10.1128/AEM.00551-18.
  • Radnedge, L., P. G. Agron, K. K. Hill, P. J. Jackson, L. O. Ticknor, P. Keim, and G. L. Andersen. 2003. Genome differences that distinguish bacillus anthracis from bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 69 (5):2755–64. doi: 10.1128/AEM.69.5.2755-2764.2003.
  • Ratnesar-Shumate, S., Y. L. Pan, S. C. Hill, S. Kinahan, E. Corson, J. Eshbaugh, and J. L. Santarpia. 2015. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum. J. Quant. Spectrosc. Radiat. Transf. 153:13–28. doi: 10.1016/j.jqsrt.2014.10.003.
  • Santarpia, J. L., S. Ratnesar-Shumate, and A. Haddrell. 2020. Laboratory study of bioaerosols: Traditional test systems, modern approaches, and environmental control. Aerosol. Sci. Technol. 54 (5):585–600. doi: 10.1080/02786826.2019.1696452.
  • Schuit, M., S. Ratnesar-Shumate, J. Yolitz, G. Williams, W. Weaver, B. Green, D. Miller, M. Krause, K. Beck, S. Wood, et al. 2020. Airborne SARS-CoV-2 is rapidly inactivated by simulated sunlight. J. Infect. Dis. 222 (4):564–71. doi: 10.1093/infdis/jiaa334.
  • Sirmollo, C. L., D. R. Collins, J. M. McCormick, C. F. Milan, M. H. Erickson, J. H. Flynn, R. J. Sheesley, S. Usenko, H. W. Wallace, A. A. T. Bui, et al. 2021. Captive aerosol growth and evolution (cage) chamber system to investigate particle growth due to secondary aerosol formation. Atmos. Meas. Technol. 14 (5):3351–70. doi: 10.5194/amt-14-3351-2021.
  • Smither, S. J., T. J. Piercy, L. Eastaugh, J. A. Steward, and M. S. Lever. 2011. An alternative method of measuring aerosol survival using spiders’ webs and its use for the filoviruses. J. Virol. Methods. 177 (1):123–7. doi: 10.1016/j.jviromet.2011.06.021.
  • Smither, S. J., L. S. Eastaugh, J. S. Findlay, and M. S. Lever. 2020. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg. Microbes Infect. 9 (1):1415–7. doi: 10.1080/22221751.2020.1777906.
  • Verreault, D., S. Z. Killeen, R. K. Redmann, and C. J. Roy. 2013. Susceptibility of monkeypox virus aerosol suspensions in a rotating chamber. J. Virol. Methods. 187 (2):333–7. doi: 10.1016/j.jviromet.2012.10.009.
  • Wathes, C. M., K. Howard, and A. J. F. Webster. 1986. The survival of Escherichia coli in an aerosol at air temperatures of 15 and 30 °C and a range of humidities. J. Hyg. (Lond). 97 (3):489–96. doi: 10.1017/S0022172400063671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.