815
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Direct influence of aerosol particles on cavity enhanced spectroscopy: Modeling and first experimental results

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 389-400 | Received 26 Jul 2023, Accepted 04 Dec 2023, Published online: 26 Dec 2023

References

  • Berden, G., R. Peeters, and G. Meijer. 2010. Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Phys. Chem. 19 (4):565–607. doi:10.1080/014423500750040627.
  • Bohren, C. F., and D. R. Huffman. 1998. Absorption and scattering of light by small particles. New York, NY: Wiley, 4. https://onlinelibrary.wiley.com/doi/book/10 .1002/9783527618156.
  • Buisson, H., and C. Fabry. 1910. Mesures de petites variations de longueurs d’onde par la méthode interférentielle. application à différents problèmes de spectroscopie solaire. J. Phys. Theor. Appl. 9 (1):298–316. doi:10.1051/jphystap:019100090029800.
  • Cotterell, M. I., J. W. Knight, J. P. Reid, and A. J. Orr-Ewing. 2022. Accurate measurement of the optical properties of single aerosol particles using cavity ring-down spectroscopy. J. Phys. Chem. A 126 (17):2619–31. doi:10.1021/acs.jpca.2c01246.
  • Cotterell, M. I., B. J. Mason, T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2015. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy. Phys. Chem. Chem. Phys. 17 (24):15843–56. doi:10.1039/c5cp00252d.
  • Cotterell, M. I., T. C. Preston, A. J. Orr-Ewing, and J. P. Reid. 2016. Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy. Aerosol Sci. Technol. 50 (10):1077–95. doi:10.1080/02786826.2016.1219691.
  • Cremer, J. W., K. M. Thaler, C. Haisch, and R. Signorell. 2016. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun. 7 (1):10941. doi:10.1038/ncomms10941.
  • David, G., O. Reich, M. E. Divéky, S. Roy, E. A. Parmentier, J. W. Cremer, K. Esat, and R. Signorell. 2019. Characterization and control of droplets optically trapped in air. In Optical Trapping and Optical Micromanipulation XVI, SPIE, 9. doi:10.1117/12.2528743.
  • Davis, C. C., and S. J. Petuchowski. 1981. Phase fluctuation optical heterodyne spectroscopy of gases. Appl. Opt. 20 (24):4151. doi:10.1364/ao.20.002539.
  • Diveky, M. E. 2022. Photothermal single-particle spectroscopy - water transport across the air-liquid interface of organic aerosol droplets photothermal single-particle. PhD thesis. ETH Zuerich.
  • Fiedler, S. E., A. Hese, and A. A. Ruth. 2003. Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371 (3–4):284–94. doi:10.1016/S0009-2614(03)00263-X.
  • Gouesbet, G. 2010. T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates. Optics Commun. 283 (4):517–21. doi:10.1016/j.optcom.2009.10.092.
  • Gouesbet, G. 2014. Latest achievements in generalized Lorenz-Mie theories: A commented reference database. Annalen der Physik 526 (11–12):461–89. doi:10.1002/andp.201400184.
  • Hayden, J., B. Baumgartner, J. P. Waclawek, and B. Lendl. 2019. Mid-infrared sensing of CO at saturated absorption conditions using intracavity quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B. 125 (9):159. doi:10.1007/s00340-019-7260-6.
  • Hercher, M. 1968. The spherical mirror Fabry-Perot interferometer. Appl. Opt. 7 (5):951–66. doi:10.1364/AO.7.000951.
  • Hernandez, G. 1985. Fabry-Perot with an absorbing etalon cavity. Appl. Opt. 24 (18):3062. doi:10.1364/ao.24.003062.
  • Hulst, H. C. d. 1981. Light scattering by small particles. New York, NY,: Dover Publications, Inc. ISBN: 0486642283.
  • Jin, W., Y. Cao, F. Yang, and H. L. Ho. 2015. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 6 (1):6767. doi:10.1038/ncomms7767.
  • Jones, P. H., O. M. Maragò, and G. Volpe. 2015. Optical tweezers. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107279711.
  • Krzempek, K. 2019. A review of photothermal detection techniques for gas sensing applications. Appl. Sci. (Switzerland) 9 (14): 2826. doi:10.3390/app9142826.
  • Lin, H. B., and A. J. Campillo. 1985. Photothermal aerosol absorption spectroscopy. Appl. Opt. 24 (11):668–81. doi:10.1364/ao.24.000422.
  • Maity, A., S. Maithani, and M. Pradhan. 2021. Cavity ring-down spectroscopy: Recent technological advancements, techniques, and applications. Anal. Chem. 93 (1):388–416. doi:10.1021/acs.analchem.0c04329.
  • Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, et al. 2021. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg1/chapter/summary-for-policymakers/.
  • Mellon, D., S. J. King, J. Kim, J. P. Reid, and A. J. Orr-Ewing. 2011. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy. J. Phys. Chem. A 115 (5):774–83. doi:10.1021/jp109894x.
  • Miller, J. L., and A. J. Orr-Ewing. 2007. Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser. J. Chem. Phys. 126 (17):174303. doi:10.1063/1.2723736.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quantitative Spectrosc. Radiative Transfer 110 (11):844–78. doi:10.1016/j.jqsrt.2009.02.035.
  • Morton, P. A., and M. J. Morton. 2018. Ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Lightwave Technol. 36 (21):5048–57. doi:10.1109/JLT.2018.2817175.
  • Niklas, C., H. Wackerbarth, and G. Ctistis. 2021. A short review of cavity-enhanced Raman spectroscopy for gas analysis. Sensors (Basel) 21 (5):1–21. doi:10.3390/s21051698.
  • Pérot, A., and L. Fabry. 1899. Sur l’application de phénomènes d’interférence à la solution de divers problèmes de spectroscopie et de métrologie. bastr. 16 (1):5–32. doi:10.3406/bastr.1899.11401.
  • Pettit, D. R., and T. W. Peterson. 1982. Coherent detection of scattered light from submicron aerosols. Aerosol Sci. Technol. 2 (3):351–68. doi:10.1080/02786828308958640.
  • Radeschnig, U., M. Knoll, B. Lang, and A. Bergmann. 2021. Photothermal monitor for black carbon mass concentration using a fiber-coupled fabry-pérot interferometer. Optics InfoBase Conference Papers 2021:5–6. doi:10.1364/es.2021.eth1a.5.
  • Reich, O., G. David, K. Esat, and R. Signorell. 2020. Weighing picogram aerosol droplets with an optical balance. Commun. Phys. 3 (1):223. doi:10.1038/s42005-020-00496-x.
  • Schäfer, J., S. C. Lee, and A. Kienle. 2012. Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence. J. Quantitative Spectros. Radiative Transfer 113 (16):2113–23. doi:10.1016/j.jqsrt.2012.05.019.
  • Schäfer, J.-P. 2011. Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe. PhD thesis, Open Access Repositorium der Universität Ulm und Technischen Hochschule Ulm. doi:10.18725/OPARU-1914.
  • Shao, L., J. Mei, J. Chen, T. Tan, G. Wang, K. Liu, and X. Gao. 2022. Recent advances and applications of off-axis integrated cavity output spectroscopy. Micro. & Optical Tech. Lett. 65 (5):1489–505. doi:10.1002/mop.33220.
  • Siegman, A. 1986. Lasers. Mill Valley, CA: University Science Books.
  • Stocker, T. F., D. Qin, G.-K. Plattner, L. V. Alexander, S. K. Allen, N. L. Bindoff, F.-M. Bréon, J. A. Church, U. Cubasch, S. Emori, et al. 2013. Technical summary. In The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 31–116. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9781107415324.005.
  • The Dow Chemical Company. 2007. The Dow Chemical Company: Tetraethylene glycol. Hoboken, NJ: The Dow Chemical Company. Technical Report.
  • Vaughan, J. M. 1989. The fabry-perot interferometer: History, theory, practice and applications, 89–101. New York, NY: Taylor & Francis. doi:10.1201/9780203736715.
  • Visser, B., J. Röhrbein, P. Steigmeier, L. Drinovec, G. Močnik, and E. Weingartner. 2020. A single-beam photothermal interferometer for in situ measurements of aerosol light absorption. Atmos. Meas. Tech. 13 (12):7097–111. doi:10.5194/amt-13-7097-2020.
  • Wang, P., W. Chen, F. Wan, J. Wang, and J. Hu. 2020. A review of cavity-enhanced Raman spectroscopy as a gas sensing method. In: Applied Spectroscopy Reviews 55 (5):393–417. doi:10.1080/05704928.2019.1661850.
  • Wang, Z., Q. Wang, W. Zhang, H. Wei, Y. Li, and W. Ren. 2019. Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound–Drever–Hall locking. Opt. Lett. 44 (8):1924–7. doi:10.1364/ol.44.001924.
  • Wheeler, M. D., S. M. Newman, A. J. Orr-Ewing, and M. N. Ashfold. 1998. Cavity ring-down spectroscopy. Faraday Trans. 94 (3):337–51. doi:10.1039/a707686j.