208
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Size-dependent depositional loss of inorganic, organic, and mixed composition particles to Teflon chamber walls under various environmental and chemical conditions

, ORCID Icon & ORCID Icon
Pages 170-180 | Received 07 Aug 2023, Accepted 15 Dec 2023, Published online: 18 Jan 2024

References

  • Bates, K. H., G. J. P. Burke, J. D. Cope, and T. B. Nguyen. 2022. Secondary organic aerosol and organic nitrogen yields from the nitrate radical (NO3) oxidation of alpha-pinene from various RO2 fates. Atmos. Chem. Phys. 22 (2):1467–82. doi:10.5194/acp-22-1467-2022.
  • Bell, D., J.-F. Doussin, and T. Hohaus. 2023. Preparation of simulation chambers for experiments. In A practical guide to atmospheric simulation chambers, ed. J.-F. Doussin, H. Fuchs, A. Kiendler-Scharr, P. Seakins, J. Wegner. Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-031-22277-1_3.
  • Besemer, A. C., and H. Nieboer. 1985. The wall as a source of hydroxyl radicals in smog chambers. Atmos. Environ. 19 (3):507–13. doi:10.1016/0004-6981(85)90171-4.
  • Biskos, G., L. M. Russell, P. R. Buseck, and S. T. Martin. 2006. Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett. 33 (7):L07801. doi:10.1029/2005GL025199.
  • Bufalini, J. J., T. A. Walter, and M. M. Bufalini. 1977. Contamination effects on ozone formation in smog chambers. Environ. Sci. Technol. 11 (13):1181–5. doi:10.1021/es60136a009.
  • Carter, W. P. L., R. Atkinson, A. M. Winer, and J. N. Pitts. Jr. 1982. Experimental investigation of chamber-dependent radical sources. Int. J. Chem. Kinetics 14 (10):1071–103. doi:10.1002/kin.550141003.
  • Charan, S. M., W. Kong, R. C. Flagan, and J. H. Seinfeld. 2018. Effect of particle charge on aerosol dynamics in teflon environmental chambers. Aerosol. Sci. Technol. 52 (8):854–71. doi:10.1080/02786826.2018.1474167.
  • Chen, B. T., H. C. Yeh, and Y. S. Cheng. 1992. Evaluation of an environmental reaction chamber. Aerosol Sci. Technol. 17 (1):9–24. doi:10.1080/02786829208959556.
  • Corner, J., and E. D. Pendlebury. 1951. The coagulation and deposition of a stirred aerosol. Proc. Phys. Soc. B 64 (8):645–54. doi:10.1088/0370-1301/64/8/304.
  • Crump, J. G., and J. H. Seinfeld. 1981. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. J. Aerosol Sci. 12 (5):405–15. doi:10.1016/0021-8502(81)90036-7.
  • Crump, J. G., R. C. Flagan, and J. H. Seinfeld. 1982. Particle wall loss rates in vessels. Aerosol. Sci. Technol. 2 (3):303–9. doi:10.1080/02786828308958636.
  • Emerson, E. W., A. L. Hodshire, H. M. DeBolt, K. R. Bilsback, J. R. Pierce, G. R. McMeeking, and D. K. Farmer. 2020. Revisiting particle dry deposition and its role in radiative effect estimates. Proc. Natl. Acad. Sci. U. S. A. 117 (42):26076–82. doi:10.1073/pnas.2014761117.
  • Fry, J. L., D. C. Draper, K. C. Barsanti, J. N. Smith, J. Ortega, P. M. Winkler, M. J. Lawler, S. S. Brown, P. M. Edwards, R. C. Cohen, et al. 2014. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. Environ. Sci. Technol. 48 (20):11944–53. doi:10.1021/es502204x.
  • Hennigan, C. J., M. A. Miracolo, G. J. Engelhart, A. A. May, A. A. Presto, T. Lee, A. P. Sullivan, G. R. McMeeking, H. Coe, C. E. Wold, et al. 2011. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos. Chem. Phys. 11 (15):7669–86. doi:10.5194/acp11-7669-2011.
  • Henry, K. M., and N. M. Donahue. 2012. Photochemical aging of α-pinene secondary organic aerosol: Effects of OH radical sources and photolysis. J. Phys. Chem. A 116 (24):5932–40. doi:10.1021/jp210288s.
  • Hildebrandt, L., N. M. Donahue, and S. N. Pandis. 2009. High formation of secondary organic aerosol from the photo-oxidation of toluene. Atmos. Chem. Phys. 9 (9):2973–86. doi:10.5194/acp-9-2973-2009.
  • Huang, Y., R. Zhao, S. M. Charan, C. M. Kenseth, X. Zhang, and J. H. Seinfeld. 2018. Unified theory of vapor-wall mass transport in teflon-walled environmental chambers. Environ. Sci. Technol. 52 (4):2134–42. doi:10.1021/acs.est.7b05575.
  • Ingebrethsen, B. J., and S. B. Sears. 1989. Particle Evaporation of Sidestream Tobacco Smoke in a Stirred Tank. J. Colloid Interface Sci. 131 (2):526–36. doi:10.1016/0021-9797(89)90195-1.
  • Keywood, M. D., V. Varutbangkul, R. Bahreini, R. C. Flagan, and J. H. Seinfeld. 2004. Secondary organic aerosol formation from the ozonolysis of cycloalkenes and related compounds. Environ. Sci. Technol. 38 (15):4157–64. doi:10.1021/es035363o.
  • Kim, M., S.-G. Jeong, J. Park, S. Kim, and J.-H. Lee. 2023. Investigating theimpact of relative humidity and air tightness on PM sedimentation and concentration reduction. Buil. Environ. 241:110270. doi:10.1016/j.buildenv.2023.110270.
  • Lamkaddam, H. 2017. Study under simulated condition of the secondary organic aerosol from the photooxydation of n-dodecane: Impact of the physical-chemical processes. Créteil, France: Université Paris-Est.
  • Loza, C. L., A. W. H. Chan, M. M. Galloway, F. N. Keutsch, R. C. Flagan, and J. H. Seinfeld. 2010. Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 44 (13):5074–8. doi:10.1021/es100727v.
  • Loza, C. L., P. S. Chhabra, L. D. Yee, J. S. Craven, R. C. Flagan, and J. H. Seinfeld. 2012. Chemical aging of m-xylene secondary organic aerosol: Laboratory chamber study. Atmos. Chem. Phys. 12 (1):151–67. doi:10.5194/acp-12-151-2012.
  • Ma, W., Y. Liu, Y. Zhang, Z. Feng, J. Zhan, C. Hua, L. Ma, Y. Guo, Y. Zhang, W. Zhou, et al. 2022. A new type of quartz smog chamber: Design and characterization. Environ. Sci. Technol. 56 (4):2181–90. doi:10.1021/acs.est.1c06341.
  • Massabò, D., S. G. Danelli, P. Brotto, A. Comite, C. Costa, A. Di Cesare, J. F. Doussin, F. Ferraro, P. Formenti, E. Gatta, et al. 2018. ChAMBRe: A new atmospheric simulation chamber for aerosol modelling and bio-aerosol research. Atmos. Meas. Tech. 11 (10):5885–900. doi:10.5194/amt-11-5885-2018.
  • Matsunaga, A., and P. J. Ziemann. 2010. Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Tech. 44 (10):881–92. doi:10.1080/02786826.501044.
  • McMurry, P. H., and D. Grosjean. 1985. Gas and aerosol wall losses in teflon film smog chambers. Environ. Sci. Technol. 19 (12):1176–82. doi:10.1021/es00142a006.
  • McMurry, P. H., and D. J. Rader. 1985. Aerosol wall losses in electrically charged chambers. Aerosol Sci. Tech. 4 (3):249–68. doi:10.1080/02786828508959054.
  • Nah, T., R. C. McVay, J. R. Pierce, J. H. Seinfeld, and N. L. Ng. 2017. Constraining uncertainties in particle-wall deposition correction during soa formation in chamber experiments. Atmos. Chem. Phys. 17 (3):2297–310. doi:10.5194/acp-17-2297-2017.
  • Ng, N. L., J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld. 2007. Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmos. Chem. Phys. 7 (14):3909–22. doi:10.5194/acp-7-3909-2007.
  • Offermann, F. J., R. G. Sextro, W. J. Fisk, D. T. Grimsrud, W. W. Nazaroff, A. V. Nero, K. L. Revzan, and J. Yater. 1985. Control of respirable particles in indoor air with portable air cleaners. Atmos. Environ. 19 (11):1761–71. doi:10.1016/0004-6981(85)90003-4.
  • Okuyama, K., Y. Kousaka, S. Yamamoto, and T. Hosokawa. 1986. Particle loss of aerosols with particle diameters between 6 and 2000 nm in stirred Tank. J. Colloid Interface Sci. 110 (1):214–23. doi:10.1016/0021-9797(86)90370-X.
  • Okuyama, K., Y. Kousaka, Y. Kida, and T. Yoshida. 1977. Turbulent coagulation of aerosols in a stirred tank. J. Chem. Eng. Jpn. 10 (2):142–7. doi:10.1252/jcej.10.142.
  • Pandian, M. D., and S. K. Friedlander. 1988. Particle deposition to smooth and rough walls of stirred chambers: Mechanisms and engineering correlations. PCH Physico Chem. Hydrodyn 10:639–45.
  • Park, S. H., H. O. Kim, Y. T. Han, S. B. Kwon, and K. W. Lee. 2001. Wall loss rate of polydispersed aerosols. Sci. Technol 35 (3):710–7. doi:10.1080/02786820152546752.
  • Parsons, M. T., D. A. Knopf, and A. K. Bertram. 2004. Deliquescence and crystallization of ammonium sulfate particles internally mixed with water-soluble organic compounds. J. Phys. Chem. A 108 (52):11600–8. doi:10.1021/jp0462862.
  • Pathak, R. K., C. O. Stanier, N. M. Donahue, and S. N. Pandis. 2007. Ozonolysis of a-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields). J. Geophys. Res. 112 (D3):D03201. doi:10.1029/2006JD007436.
  • Peng, C., A. H. Chow, and C. K. Chan. 2001. Hygroscopic study of glucose, citric acid, and sorbitol using an electrodynamic balance: Comparison with unifac predictions. Aerosol Sci. Technol. 35 (3):753–8. doi:10.1080/02786820152546798.
  • Pierce, J. R., G. J. Engelhart, L. Hildebrandt, E. A. Weitkamp, R. K. Pathak, N. M. Donahue, A. L. Robinson, P. J. Adams, and S. N. Pandis. 2008. Constraining particle evolution from wall losses, coagulation, and condensation-evaporation in smog chamber experiments: Optimal estimation based on size distribution measurements. Aerosol Sci. Tech. 42 (12):1001–15. doi:10.1080/02786820802389251.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Comm. 9:956.
  • Schnitzhofer, R., A. Metzger, M. Breitenlechner, W. Jud, M. Heinritzi, L.-P. De Menezes, J. Duplissy, R. Guida, S. Haider, J. Kirkby; the CLOUD Team, et al. 2014. Characterisation of organic contaminants in the CLOUD chamber at CERN. Atmos. Meas. Tech. 7 (7):2159–68. and doi:10.5194/amt-7-2159-2014.
  • Schwantes, R. H., S. M. Charan, K. H. Bates, Y. Huang, T. B. Nguyen, H. Mai, W. Kong, R. C. Flagan, and J. H. Seinfeld. 2019. Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions. Atmos. Chem. Phys. 19 (11):7255–78. doi:10.5194/acp-19-7255-2019.
  • Shao, Y., Y. Wang, M. Du, A. Voliotis, M. R. Alfarra, S. P. O'Meara, S. F. Turner, and G. McFiggans. 2022. Characterisation of the manchester aerosol chamber facility. Atmos. Meas. Tech. 15 (2):539–59. doi:10.5194/amt-15-539-2022.
  • Stern, J. E., R. C. Flagan, D. Grosjean, and J. H. Seinfeld. 1987. Aerosol formation and growth in atmospheric aromatic hydrocarbon photooxidation. Environ. Sci. Technol. 21 (12):1224–31. doi:10.1021/es00165a011.
  • Takekawa, H., H. Minoura, and S. Yamazaki. 2003. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmos. Environ. 37 (24):3413–24. doi:10.1016/S1352-2310(03)00359-5.
  • Wang, J., J. F. Doussin, S. Perrier, E. Perraudin, Y. Katrib, E. Pangui, and B. Picquet-Varrault. 2011. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research. Atmos. Meas. Tech. 4 (11):2465–94. doi:10.5194/amt-4-2465-2011.
  • Wang, X., T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lü, J. Chen, et al. 2014. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 7 (1):301–13. doi:10.5194/amt-7-301-2014.
  • Wang, N., S. D. Jorga, J. R. Pierce, N. M. Donahue, and S. N. Pandis. 2018a. Particle wall-loss correction methods in smog chamber experiments. Atmos. Meas. Tech. 11 (12):6577–88. doi:10.5194/amt-11-6577-2018.
  • Wang, N., E. Kostenidou, N. M. Donahue, and S. N. Pandis. 2018b. Multi-generation chemical aging of α-pinene ozonolysis products by reactions with OH. Atmos. Chem. Phys. 18 (5):3589–601. doi:10.5194/acp-18-3589-2018.
  • Weitkamp, E. A., A. M. Sage, J. R. Pierce, N. M. Donahue, and A. L. Robinson. 2007. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ. Sci. Technol. 41 (20):6969–75. doi:10.1021/es070193r.
  • Wu, S., Z. Lü, J. Hao, Z. Zhao, J. Li, H. Takekawa, H. Minoura, and A. Yasuda. 2007. Construction and characterization of an atmospheric simulation smog chamber. Adv. Atmos. Sci. 24 (2):250–8. doi:10.1007/s00376-007-0250-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.